Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Earth Observation Plan Takes Critical Step Forward

28.11.2003


Italy Hosts Second Meeting Of Group On Earth Observation



The ad-hoc intergovernmental Group on Earth Observations (GEO) will hold its second meeting this week in Baveno, Italy. The meeting aims to give direction to the continued development of a 10-year plan to implement a comprehensive, coordinated, and sustained Earth observation system or set of systems. The first meeting took place in August 2003 in Washington, DC, immediately after the first Earth Observation Summit, which established the group.

In Baveno, the Group will review the first draft of the GEO Framework Document that will lead to a 10-year implementation plan to be presented at the next ministerial meeting to be held in Tokyo next spring. The Plan will direct the co-ordination of observing systems that link thousands of individual technological assets into a comprehensive Earth observation effort and provide critical information needed to address important global economic, social and scientific challenges. This information will help policy-makers around the world make more informed decisions regarding climate, the environment, and a host of other economic and social issues that are affected by Earth and climate systems.


This second GEO meeting will be co-chaired by Achilleas Mitsos, Director General for Research at the European Commission, Conrad C. Lautenbacher, Under Secretary of Commerce for Oceans and Atmosphere and NOAA Administrator, Akio Yuki, Deputy Minister of Education, Culture, Sports, Science and Technology, Japan, and Rob Adam, Director General of the Department of Science and Technology, South Africa.

The first Earth Observation Summit, in July 2003 in Washington, marked an important milestone in the development of a comprehensive, coordinated and sustained Earth observation system(s). During the Summit, a joint Declaration was adopted that

- recognized the need to move forward in the development of these systems,
- reaffirmed the need for Earth systems data and information for sound decision-making,
- set forth principles for long-term cooperation in meeting these goals, and
- committed to improving Earth observation systems and scientific and technical support in developing countries.

This Declaration also established the GEO. The GEO will pave the way for the second Earth Observation Summit in April 2004 in Japan, where the Framework Document will be adopted. The 10-year Implementation Plan will be adopted at the third Earth Observation Summit in Europe at the end of 2004.


Background

The need for developing a comprehensive, coordinated and sustained Earth Observation system or systems have been recognized among nations at the highest political levels. In September 2002, the World Summit on Sustainable Development held in Johannesburg, South Africa, called for improved cooperation and coordination among global observing systems and research programs for integrated global observations. In June 2003, the G-8 Summit held in Evian, France, called for strengthened international cooperation on global observation of the environment.

Around the globe, Earth observing systems have already demonstrated their value – e.g. in estimating crop yields, monitoring water and air quality, improving airline safety, and forecasting the weather. However, gaps or “blind spots” in understanding Earth and its complex systems severely limit our knowledge of how to address many concerns relating to drought, disease outbreaks, crop forecasts, energy, and transportation. Relevant tools are required to address scientific uncertainties and improve management of the natural resources that underpin our economies.


The high cost of uncertainty

Our need for tools to predict severe weather at short notice and to monitor long-term atmospheric change has never been greater. There are powerful economic as well as environmental incentives for gaining a greater understanding of these phenomena. According to a survey by the Center for Research on the Epidemiology of Disasters, in the last 25 years, natural disasters have affected 4.1 billion people and lead to the loss of 1.3 million lives worldwide.

For example, in Europe, the economic and social costs of unpredicted climate change is huge: France recorded 11,435 weather-related mortalities in the first 2 weeks of August 2003 alone when temperatures soared over 40°C (104° F); fires in Portugal this summer caused over €1 billion in damage; the bill for repairing damage in Germany following the floods of summer 2002 was about €15 billion and this year German farmers fear a loss of 80% of their crops because of the drought.

In the United States, more than $3 trillion of U.S. GDP is affected by climate and weather - including the agriculture, energy, construction, travel and transportation industry sectors. In Japan, abnormally low temperatures in the summer of 2003 will cost the country an estimated $2.7 billion in lost crops. It is also well documented that inadequate Earth observation capacity is significantly constraining poverty alleviation efforts in developing countries, as many aspects of their economies are especially sensitive to climactic hazards.

To address these types of problems, significant investments have already been made already made in space and in-situ or surface-based observing systems. For example, Europe has invested in the ENVISAT, SPOT, METOP and Meteosat Second Generation satellites for a variety of land, ocean and atmospheric and meteorological applications. Developing countries have also increasingly been investing in strengthening especially their in-situ observation facilities, including meteorological services. As an example, the Environment Initiative of the New Partnership for Africa’s Development (NEPAD) includes an important focus on the role of Earth observation.

In addition, international organizations such as The World Meteorological Organisation (WMO) have played a leadership role in developing global observing networks. The global observing system of the WMO, World Weather Watch, collects and distributes data around the globe from over 10,000 land surface stations, 7000 ships and 16 meteorological and environmental satellites. Other monitoring systems include the Global Ocean Observing System (GOOS), Global Climate Observing System (GCOS), and the Global Terrestrial Observing System (GTOS).

These systems provide critical data. However, linking and expanding the existing systems will add considerable power to an already impressive data collection effort and a quantum leap in our ability to predict and manage Earth system cycles and processes. The GEO will build upon the existing efforts at integration of these and other systems begun five years ago within the Integrated Global Observing Strategy Partnership (IGOS_P).

Monique Septon | alfa
Further information:
http://earthobservations.org

More articles from Ecology, The Environment and Conservation:

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

nachricht Northeast-Atlantic fish stocks: Recovery driven by improved management
04.02.2019 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>