Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bush Administration plan to reduce global warming could devastate sea life

18.11.2003


URI marine biologist says CO2 injection in deep sea would alter ocean chemistry, affect numerous creatures



A Bush Administration proposal to mitigate the effects of global warming by capturing carbon dioxide emissions from power plants and injecting it into the deep sea could have disastrous effects on sea life, according to a University of Rhode Island researcher.

Brad Seibel, assistant professor of marine biology at URI, said that while the Administration’s plan is still in the experimental stage, enough is already known about the biology of marine organisms to say with certainty that the plan will harm the marine environment in significant ways.


Increased CO2 in the oceans would result in decreases in the pH levels (the measure of acidity) of seawater, resulting in dramatic physiological effects on many species, Seibel said. Shallow-living organisms like shelled mollusks and corals are already being affected by the growing levels of CO2 in the atmosphere. As atmospheric CO2 diffuses into the upper layers of the water, it inhibits the ability of shellfish to form shells and causes coral reefs to dissolve.

Deep-sea creatures are even more sensitive to environmental changes, he said. In some species, their metabolism would become suppressed and lead to retarded growth and reproduction, while others would be unable to transport oxygen in their blood.

"CO2 injection would be detrimental to a great many organisms," said the URI biologist. "It would kill everything that can’t swim fast enough to get out of the way, because in concentrated form it’s highly toxic, even to humans. But the Department of Energy seems willing to sacrifice the animals of the deep sea if it will stop global warming. That’s not entirely unreasonable considering that if we keep stalling on taking serious measures to reduce global warming, we won’t be able to do anything about it. But I’d still like to see that we’re doing everything else possible to reduce emissions before we begin polluting the deep-sea."

The government’s "carbon sequestration" plan is designed to collect carbon dioxide emissions that would otherwise be released into the atmosphere and store them in underground geologic formations or deep in the ocean. Energy Secretary Spencer Abraham announced in September the creation of seven regional partnerships to establish the framework needed to develop the necessary technologies and put them into action. In addition, the Bush Administration convened a Carbon Sequestration Leadership Forum last June where energy ministers from 13 countries discussed the potential for CO2 injections around the globe.

In the new book Climate Change and Biodiversity, published in August, Seibel and co-author Victoria Fabry wrote: "From the perspective of marine organisms, deep-ocean sequestration means concentrating an otherwise dilute toxin to well above lethal levels, and placing it in an environment where the organisms are less tolerant of environmental fluctuation in general and CO2 in particular…Localized devastation of biological communities at the injection sites is certain."

As seawater becomes acidified, growth rates of calcareous phytoplankton (those with calcium carbonate shells) will be reduced as a result of the effects of CO2 on the process of calcification. Metabolism in some animal species may also be depressed by increased acidity. Furthermore, some fish, squids, and shrimps will have a diminished capacity for oxygen uptake at the gill and transportation through their bloodstream, leading to asphyxiation.

Seibel said that there is typically a natural exchange of CO2 between the sea and the atmosphere, but increases of atmospheric CO2 are already affecting the equilibrium. Intentional injections of CO2 will further disrupt the ecosystem.

"The carbon dioxide-carbonate system is arguably the most important chemical equilibria in the ocean," Seibel and Fabry wrote. "It influences nearly every aspect of marine science, including ecology and, ultimately, the biodiversity of the oceans."

Brad Seibel, assistant professor of marine biology in the University of Rhode Island’s Department of Biological Sciences, joined the URI faculty in the summer of 2003 after having worked as a marine ecologist at the Monterey Bay Aquarium Research Institute in Monterey, Calif. for several years. He received undergraduate and doctorate degrees from the University of California, Santa Barbara. In addition to studying the impact of CO2 on deep-sea creatures, his research focuses on the physiology and adaptations of marine organisms, especially squid, living in extreme environments like the waters around Antarctica.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Increasing frequency of ocean storms could alter kelp forest ecosystems
30.10.2018 | University of Virginia

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>