Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New medicines at risk from biodiversity loss

17.10.2003


Science study reveals that habitat loss imperil one of the world’s most promising source of new drugs



In a letter published in the October 17th issue of Science, three scientists warn that biodiversity loss could have devastating consequences for drug discovery and the development of new medicines. "Tropical cone snails may contain the largest and most clinically important pharmacopoeia of any genus in Nature" says lead author of the study, Eric Chivian from the Harvard Medical School, "but wild populations are being decimated by habitat destruction and overexploitation. To lose these species would be a self-destructive act of unparalleled folly."

Approximately 500 species of cone snails inhabit shallow tropical seas. They defend themselves and paralyze their prey – worms, fish, and other molluscs – by injecting a cocktail of toxins through a hollow, harpoon-like tooth. Each species has its own distinct set of around 100 ’conotoxins’, which like a gourmet chef it mixes in constantly changing proportions, thereby preventing evolution of resistance in their prey. Co-researcher Aaron Bernstein, also of Harvard, says "To date, only about 100 of the estimated 50,000 cone snail toxins have been characterized, and only a handful tested for pharmacologic activity. The results have extraordinary promise for the development of powerful new drugs."


With more than 2600 studies published in the last 20 years, there is much excitement about conotoxins in biomedicine. "Most conotoxins are a succinct ten to forty amino acids in length and are exquisitely selective about their receptor binding sites. This makes them powerful tools for understanding how cells work and a rich source for discovery of new medicines", said Bernstein. Among many discoveries, conotoxins that block key neurological pathways have been effective in the early detection and may also help treat small-cell lung cancer, one of the most devastating human cancers. A compound now in clinical trials has powerful anti-epileptic activity. Experiments suggest that conotoxins could treat muscle spasticity following spinal cord injury. They could prevent cell death when there is inadequate circulation, such as during strokes, head injuries or coronary bypass surgery. They could also be used to treat clinical depression, heart arrhythmias and urinary incontinence.

Conotoxin research has advanced farthest in treatment of pain. The synthetic drug Prialt is in extended Stage III clinical trials for the treatment of intractable pain (unremitting, severe, and essentially untreatable pain) and could soon be on the market. "Prialt may be 1000 times more potent than morphine. More importantly, it does not seem to lead to addiction or tolerance, where increasing doses are required to achieve the same effect" said Chivian. These problems have greatly limited the long-term effectiveness of the current mainstays of severe pain therapy, morphine and other opiates. Many millions of people suffer from intractable pain and have developed tolerance to opiates, so a potent painkiller like Prialt could represent an enormous therapeutic breakthrough.

Just as we are appreciating the remarkable potential of cone snails as a source of new medicines, they are coming under intense pressure in the wild. Their shallow tropical habitats are rapidly being destroyed and snails are being collected at alarming rates from the wild to supply the ornamental shell trade as well as for biomedical research.

Cone snails are exquisitely beautiful and have been coveted by collectors since at least the 16th Century. A rare cone snail shell was sold at an Amsterdam auction in 1796 for more than a Vermeer painting! Collectors still cherish these shells, and rates of capture from the wild are escalating rapidly. "Millions of cone snails are now sold annually for as little as a few cents each in shops all over the world. But we could not find any country that monitors this trade" said co-author Callum Roberts, of the University of York, "Nobody is looking out for them."

Alongside overexploitation, cone snail habitats are being degraded and destroyed by coastal development, overfishing, pollution, disease and global climate change. A quarter of the planet’s coral reefs have already been seriously damaged or destroyed and half of the world’s mangroves cleared. The risk of global extinction is highest for species with narrow geographic distributions. The study found that one in five cone snail species had global ranges encompassing less than 3500km2 of reef, equivalent to a single medium sized atoll. For example, eight species are unique to the Philippines, the hub of the world’s ornamental shell trade. People threaten 97% of Philippine coral reefs and extinctions are inevitable if impacts are not alleviated soon.

Habitat loss and escalating, uncontrolled exploitation make a lethal combination that today threatens with extinction cone snails and many other species of biomedical interest. "International markets can develop rapidly in the modern world, which means that wild populations can be decimated before regulatory agencies see any need to protect them." said Roberts. "For this reason, we believe all internationally traded organisms (whether alive or dead) must be monitored, regardless of whether they are currently listed as threatened. This would allow countries to identify emerging markets and act early enough to prevent depletion." This could be achieved, say the authors, by extending CITES (The Convention on International Trade in Endangered Species) to cover all wild-caught species. Meanwhile, at the earliest opportunity cone snails should be added to Appendix II of CITES, so requiring countries to monitor trade and prevent overexploitation.

"Wild nature has been the template for most of the medicines we use today but we have barely even begun to tap its potential", said Chivian, "If we fail to protect cone snails, the loss to future generations would be incalculable."


For More Information Contact:

Kathleen Frith, Director of Communications, HMS Center for Health and the Global Environment, Harvard Medical School, Boston, USA. Tel: 617-384-8591, kfrith@hms.harvard.edu

Callum Roberts, Professor of Marine Conservation, University of York, UK. Tel: 44-190-443-4066, Mobile 44-772-936-9303, email: cr10@york.ac.uk.

Kathleen Frith | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>