Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Plant Life Slows down and Absorbs Less Carbon

17.09.2003


Distributions of Ocean Net Primary Productivity (1997-2002)

The image shows ocean net primary productivity distributions from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the OrbView-2 satellite (1997-2002). The units are in grams of Carbon per meter squared per year. Light gray areas indicate missing data. Credit: Images by Robert Simmon, NASA GSFC Earth Observatory, based on data provided by Watson Gregg, NASA GSFC.


Difference in Distributions of Ocean Net Primary Productivity between 1997-2002 and 1979-1986 Data

The image shows the difference in ocean net primary productivity between the SeaWiFS era (1997-2002) and the CZCS era (1979-1986). To obtain the differences, the CZCS results were subtracted from the SeaWiFS results. The units are in grams of Carbon per meter squared per year. Light gray areas indicate missing data. Credit: Images by Robert Simmon, NASA GSFC Earth Observatory, based on data provided by Watson Gregg, NASA GSFC.

Plant life in the world’s oceans has become less productive since the early 1980s, absorbing less carbon, which may in turn impact the Earth’s carbon cycle, according to a study that combines NASA satellite data with NOAA surface observations of marine plants.

Microscopic ocean plants called phytoplankton account for about half the transfer of carbon dioxide (CO2) from the environment into plant cells by photosynthesis. Land plants pull in the other half. In the atmosphere, CO2 is a heat- trapping greenhouse gas.

Watson Gregg, a NASA GSFC researcher and lead author of the study, finds that the oceans’ net primary productivity (NPP) has declined more than 6 percent globally over the last two decades, possibly as a result of climatic changes. NPP is the rate at which plant cells take in CO2 during photosynthesis from sunlight, using the carbon for growth. The NASA funded study appears in a recent issue of Geophysical Research Letters.

"This research shows ocean primary productivity is declining, and it may be a result of climate changes such as increased temperatures and decreased iron deposition into parts of the oceans. This has major implications for the global carbon cycle," Gregg said. Iron from trans-continental dust clouds is an important nutrient for phytoplankton, and when lacking can keep populations from growing.

Gregg and colleagues used two datasets from NASA satellites: one from the Coastal Zone Color Scanner aboard NASA’s Nimbus- 7 satellite (1979-1986); and another from Sea-viewing Wide Field-of-view Sensor data on the OrbView-2 satellite (1997- 2002).

The satellites monitor the green pigment in plants, or chlorophyll, which leads to estimates of phytoplankton amounts. The older data was reanalyzed to conform to modern standards, which helped make the two data records consistent with each other. The sets were blended with surface data from NOAA research vessels and buoys to reduce errors in the satellite records and to create an improved estimate of NPP.

The authors found nearly 70 percent of the NPP global decline per decade occurred in the high latitudes (above 30 degrees). In the North Pacific and North Atlantic basins, phytoplankton bloom rapidly in high concentrations in spring, leading to shorter, more intense lifecycles. In these areas, plankton quickly dies and can sink to the ocean floor, creating a potential pathway of carbon from the atmosphere into the deep ocean.

In the high latitudes, rates of plankton growth declined by 7 percent in the North Atlantic basin, 9 percent in the North Pacific basin, and 10 percent in the Antarctic basin when comparing the 1980s dataset with the late 1990s observations.

The decline in global ocean NPP corresponds with an increase in global sea surface temperatures of 0.36 degrees Fahrenheit (F) (0.2 degrees Celsius (C)) over the last 20 years. Warmer water creates more distinct ocean layers and limits mixing of deeper nutrient-rich cooler water with warmer surface water. The lack of rising nutrients keeps phytoplankton growth in check at the surface.

The North Atlantic and North Pacific experienced major increases in sea surface temperatures: 0.7 degrees C (1.26 F) and 0.4 degrees C (0.72 F) respectively. In the Antarctic, there was less warming, but lower NPP was associated with increased surface winds. These winds caused plankton to mix downward, cutting exposure to sunlight.

Also, the amount of iron deposited from desert dust clouds into the global oceans decreased by 25 percent over two decades. These dust clouds blow across the oceans. Reductions in NPP in the South Pacific were associated with a 35 percent decline in atmospheric iron deposition.

"These results illustrate the complexities of climate change, since there may be one or more processes, such as changes in temperature and the intensity of winds, influencing how much carbon dioxide is taken up by photosynthesis in the oceans," said co-author Margarita Conkright, a scientist at NOAA’s National Oceanographic Data Center, Silver Spring, Md.

Other recent NASA findings have shown land cover on Earth has actually been greening. For information and images on the Internet, visit: www.nasa.gov/home/hqnews/2003/jun/HQ_03182_green_garden.html

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2003/0815oceancarbon.html
http://www.nasa.gov/home/hqnews/2003/jun/HQ_03182_green_garden.html

More articles from Ecology, The Environment and Conservation:

nachricht Lights on fishing nets save turtles and dolphins
05.12.2019 | University of Exeter

nachricht For some corals, meals can come with a side of microplastics
04.12.2019 | University of Washington

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Detailed insight into stressed cells

05.12.2019 | Life Sciences

State of 'hibernation' keeps haematopoietic stem cells young - Niches in the bone marrow protect from ageing

05.12.2019 | Life Sciences

First field measurements of laughing gas isotopes

05.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>