Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study begins to unravel fate of toxic pollutants harbored in Arctic waters

15.09.2003


An analysis of pesticides that accumulate in Arctic waterways is giving scientists insight into the fate of such pollutants once they settle in polar regions.

The Arctic holds a telltale record of how humans have used chemicals globally during the past several decades. These cold corners of the earth act as a sink of sorts – chemicals used in industry and agriculture worldwide slowly migrate to and settle there – in sizeable quantities – in water, snow, ice, soil and vegetation.

In a new study, researchers found that the pollutant breakdown process depends largely on the type of dissolved organic matter residing in a body of water, as well as the presence of sunlight. They reported their findings on September 11 at the meeting of the American Chemical Society in New York City.



"Once pollutants enter the water column, their behavior is poorly understood – particularly the processes that govern their lifetime and concentrations," said Amanda Grannas, a postdoctoral researcher in chemistry at Ohio State University. "Such pollutants are now being found in wildlife, from fish to seals to whales, and even in people living in the Arctic."

She and her colleagues analyzed the behavior of two pesticides – lindane and hexachlorobenzene (HCB). Both are prominent in Arctic waters, and both are part of a group of chemicals known as persistent organic pollutants. HCB was banned from use in the United States in 1984, but is still used as a pesticide in many developing countries. Farmers in the United States use lindane to treat seeds prior to planting.

In this study, HCB rapidly broke down into at least two detectable compounds, while lindane remained nonreactive. Aside from their ubiquity, the researchers chose these substances because of their water solubility – lindane’s solubility in water is higher than that of HCB.

"A pollutant’s water solubility may play a role in its interaction with dissolved organic matter," Grannas said. "Chemicals that are more water soluble are less likely to interact with organic material."

"This interaction may play an important role in the ability of organic matter to react with a pollutant in the presence of light," said Yu-Ping Chin, a study co-author and an associate professor of geological sciences at Ohio State.

"In addition to solubility, a pollutant’s chemical properties will play a role in its potential to interact with organic material," Grannas said. "While lindane and HCB are very similar in terms of their chemical formulas, the molecular bonding in each is different. Because of this, we expected a stronger interaction between HCB and organic matter."

Grannas and Chin conducted the study with Penney Miller, an assistant professor of chemistry at the Rose-Hulman Institute of Technology in Terre Haute, Ind. The research was funded by the National Science Foundation.

The fact that some pollutants do degrade may lead to a false sense of security, Grannas said.

"There’s a belief that if a pollutant degrades via natural processes, then it’s okay to still emit it and let nature take care of the mess," she said. "Other studies analyzing different pollutants have found that their breakdown products in some cases are more toxic than the original pollutant."

Grannas and her colleagues collected surface water samples from several waterways in the Alaskan Arctic. The organic matter detected in each waterway was primarily from plant material that washed into the water. (Algae and bacteria comprise the other primary source of organic matter in water.)

Although the source of organic matter was similar in each water sample, the researchers found that HCB degraded at the highest rate in the presence of organic matter containing the highest nitrogen levels.

“Nitrogen levels can vary even within a body of water, and may be an explanation for why pollutant degradation is higher in some areas,” Grannas said. "Other researchers have found that pollutant levels can spike in otherwise similar areas."

In a related experiment, the researchers found that about 30 percent of the original HCB concentration in a lake water sample had degraded in about six hours in the presence of organic matter and sunlight. They conducted another experiment, this time mimicking the amount of sunlight that would penetrate to a depth of four inches. The degradation of HCB was three times slower.

Sunlight penetration drops off quite significantly with depth – much of it reflects off the surface, is scattered in the water column or is absorbed by organic matter in the water.

"There’s a significant loss of light even in the first few centimeters of the water column," Chin said. Because of this, the most active area of photochemical decay will be within the top few centimeters of the lake.

Lindane showed no signs of degrading in the presence of organic matter and sunlight.

"Lindane is one of the most persistent of pollutants," Grannas. "This could be because it’s photochemically inert, whereas pollutants like HCB degrade relatively quickly.

"The main message is that pollutants can behave quite differently," Grannas said. "These pollutants already affect local ecosystems, and could have repercussions for human health."

Contact: Amanda Grannas, (614) 292-7637; Grannas.1@osu.edu
Written by Holly Wagner, 614-292-8310; Wagner.235@osu.edu

Holly Wagner | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/POPs1.htm

More articles from Ecology, The Environment and Conservation:

nachricht Loss of habitat causes double damage to species richness
02.04.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>