Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fe-TAML(R) activators developed at Carnegie Mellon help cleanup paper and wood pulp manufacturing

11.09.2003


Potent, environmentally friendly catalysts called Fe-TAML® activators, developed by scientists at Carnegie Mellon University, can destroy colored pollutants and toxic compounds resulting from paper and wood pulp processing.



The results of extensive field trials conducted by Carnegie Mellon University, Forest Research of New Zealand and the University of Auckland are being presented by Dr. L. James Wright of the University of Auckland on Wed., Sept. 10, in New York City at the 226th annual meeting of the American Chemical Society (paper 177, "Activation of hydrogen peroxide with a TAML® catalyst for wastewater remediation in the pulp and paper industry," Industrial & Engineering Chemistry Division).

"Right now, we can use Fe-TAMLs with hydrogen peroxide to clean up the unsightly color from chlorine-based bleaching processes used by mills to make paper and the chlorinated byproducts of those processes, which are considered a potential health hazard," said Terry Collins, the Thomas Lord Professor of Chemistry at Carnegie Mellon and the chief researcher on the Fe-TAML project. Collins describes the results of the decolorization as going from ’coffee’ to ’lemonade.’


Fe-TAMLs (TAML stands for tetra-amido macrocyclic ligand) are synthetic catalysts made with elements found in nature.

While the current study shows that the Fe-TAML activators are extremely promising in cleanup efforts, their real promise may be in replacing altogether chlorine-based bleaching processes currently in place. If accomplished, this substitution would virtually avert the formation of chlorinated byproducts altogether and greatly reduce or eliminate color production associated with paper processing, according to Collins.

The paper and wood pulp manufacturing process produces approximately 100 million tons of bleached pulp each year for use in the manufacture of a variety of cellulose-based products including white paper. In standard mill paper processing, a dark, coffee-colored effluent is produced, called ’color’ in the industry because of its dark hue, which enters streams and rivers. This effluent often contains a dark-colored oxidized form of a polymer derived from lignin, which is a polymer surrounding the cellulose in wood, as well as chlorinated byproducts. The effluent inhibits light from penetrating the water. Reduced light, in turn, can reduce plant growth and affect organisms that depend on those plants for food.

While Fe-TAML activators are not yet optimized to the point where they could replace chlorinated bleaching processes completely, they could be used now by paper and wood pulp mills to significantly reduce color so that brown, opaque wastewater becomes yellow and translucent, according to Collins. The decolorization process also reduces chlorinated byproducts resulting from some wood bleaching processes by nearly 30 percent.

Hydrogen peroxide catalyzed by Fe-TAML activators eventually should provide a much more efficient bleaching process than one using chlorinated compounds, according to Collins, because only small quantities of the Fe-TAML activators and hydrogen peroxide are needed to be highly effective. Furthermore, according to Collins, Fe-TAMLs are likely to be relatively inexpensive catalysts when produced in large amounts.

The field trials on color removal conducted in 2003 were funded by New Zealand resources and by the Eden Hall Foundation in Pittsburgh, Pennsylvania.

Fe-TAML activators originated at Carnegie Mellon’s Institute for Green Oxidation Chemistry under the leadership of Collins, who is a strong proponent of green chemistry to create environmentally friendly, sustainable technologies. Fe-TAML activators show enormous potential to provide clean, safe alternatives to existing industrial practices. They also provide ways to remediate other pressing problems that currently lack solutions.

As part of this September’s American Chemical Society meeting symposium, "Green Chemistry: Multidisciplinary Science and Engineering Applied to Global Environmental Issues," the Collins group will present results of Fe-TAML activators’ effectiveness in killing a simulant of a biological warfare agent, reducing fuel pollutants, cleaning wastewater from textile manufacturing and detoxifying pesticides. At the symposium, the Collins group also will highlight how Fe-TAML activators can work with oxygen rather than hydrogen peroxide, thereby extending tremendously the range of potential applications of these catalysts.

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>