Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detoxifying Sediments With Electrons and UV Light

28.08.2003


The concentration of certain toxic organic chemicals in waterway sediments can be reduced by 83 percent using electron beams—the same technology already used to decontaminate mail—scientists from the National Institute of Standards and Technology (NIST) and the University of Maryland will report in the Sept. 1 issue of Environmental Science & Technology. In an additional series of laboratory experiments, the team found that ultraviolet light also can substantially reduce the concentration of these chemicals.



The results are significant because sediments, soupy mixtures of water and particles of various sizes, arenotoriously difficult and expensive to decontaminate. Further, electron beams and ultraviolet light effectively detoxified the banned chemicals known collectively as polychlorinated biphenyls, or PCBs, which can get into the food chain and increase the risk of cancer in humans. Waterways such as the Hudson River have bottom sediments heavily contaminated with PCBs. However, whether electron beams and ultraviolet light are practical decontamination techniques will depend on cost-effectiveness comparisons to existing methods, such as chemical treatment and incineration. In addition, issues such as availability of electron beams will need to be resolved. The scientists used a beam at the University of Maryland for the recent studies.

Electron beams and ultraviolet light remove chlorine ions (charged atoms) from PCBs, which reduces toxic-ity and enhances prospects for biodegradation of the remaining material by living organisms. The scientists evaluated the effectiveness of the treatment methods in removing PCBs from a NIST Standard Reference Material containing sediments with carefully measured amounts of contaminants. Research continues on additives and conditions that might enhance the decontamination processes. The research is funded by NIST, the university, and the Maryland Water Resources Center.


Laura Ost, | NIST
Further information:
http://www.nist.gov/public_affairs/techbeat/tb2003_0827.htm#uv

More articles from Ecology, The Environment and Conservation:

nachricht Robotic fish to replace animal testing
17.06.2019 | Otto-von-Guericke-Universität Magdeburg

nachricht Marine oil snow
12.06.2019 | University of Delaware

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>