Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clouds reveal Europe’s ozone future

24.07.2003


Forget blue skies research, it is clouds that have focused minds at the University of Leicester where scientists are tackling the causes of ozone depletion.

Atmospheric scientists in the Department of Physics and Astronomy are spearheading the MAPSCORE project, a European Commission Environment project which investigates a major cause of ozone depletion - high altitude polar clouds which activate the chlorine originally from CFCs and lead eventually to severe ozone destruction.

Leicester researchers have discovered it is possible to map the global distribution of polar clouds from space, and to determine their composition.



For the first time, scientists can see maps of clouds around the globe, via the internet, as soon as the ESA ENVISAT satellite detects them. This knowledge has already been put to good use in examining clouds and ozone loss near Europe during the last winter. Now the Leicester scientists are observing the evolution of the Antarctic ozone hole which last year behaved in a unprecedented fashion and showed that there are still surprises in the ozone story.

University of Leicester scientist Dr John Remedios, who is coordinating the MAPSCORE project, said: “ENVISAT makes it possible for us to map Polar Stratospheric Clouds in ‘near real-time’ for the first time. We have unprecedented detail and can even define the types of cloud that are driving ozone loss. This information guides our atmospheric modelling of how these polar stratospheric clouds form and their influence. This is important because we need to be able to predict how much ozone will be depleted in future years and polar stratospheric clouds are a key part of the problem”.

Clouds form in the polar stratosphere at altitudes of 12-28 km during the cold winter months. Chlorine from CFCs can be released from the surface of the cloud particles, and incident sunlight in the spring stimulates the rapid destruction of ozone by the ‘active’ chlorine in the polar stratospheric clouds. However, the overall occurrence and extent of PSCs in polar winter needs to be quantified, and it is here that ENVISAT’s daily monitoring of the atmosphere is vital as part of a wider effort to tackle this problem.

Dr John Remedios said: “For this reason, we are participating very actively in the latest European Commission campaign, ‘Vintersol’, which rallies over 300 scientists from over 14 European countries to tackle the problem of measuring and understanding the causes of mid-latitude ozone depletion, and to predict future ozone levels.” In the first Arctic phase, the Vintersol study was co-ordinated with a large NASA campaign, SOLVE-2, which gives a measure of the large international scientific effort involved in this work.

Stratospheric ozone levels over Europe have been decreasing at a rate of 6% per decade each spring, allowing more ultra-violet radiation to reach the ground. Information gleaned from the MAPSCORE project concerning ozone depletion by PSCs will enable Vintersol campaign scientists to identify future trends in ozone levels, and determine whether we can expect an increased health risk for Europeans of the future.

The MAPSCORE project is funded by the Environment Programme of the European Commission under Framework V. The Natural Environment Research Council has recently announced a new grant to support the development of the ENVISAT cloud mapping and to help Leicester scientists design a new space instrument which could perform an even better job of monitoring these important clouds.

The ENVISAT satellite is a major ESA mission monitoring the health of the planet.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First implementation of Gecomer<sup>®</sup> Technology in a Collaborative Robot

Scientists at the INM present a Cobot for the first time which is equipped with microstructured surfaces for the handling of objects. Because these structures are very soft and have no sharp corners or edges, the risk of injury to humans is further reduced.

Collaborative robots are a new generation of robots for direct cooperation with humans, even without a safety distance or protective cages. Scientists at the...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

Discovery of a Primordial Metabolism in Microbes

21.03.2019 | Life Sciences

Protein BRCA1 as a Stress Coach

21.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>