Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

City-grown air pollution is tougher on country trees

10.07.2003


CITY TREES VERSUS COUNTRY COUSINS. Dug up after a growing season in two kinds of air pollution, cottonwood trees show the retardant effects of ozone. From left, five city trees from the Bronx, where nitric-oxide pollution reduced the ozone exposure period; Cornell ecologist Jillian Gregg; and five country trees that grew in a high ozone rural environment in Riverhead, Long Island. Photo provided by Jilian Gregg. Copyright © Cornell University



NOT SO LUCKY. Examining tree growth in New York City, Cornell ecologist Jillian Gregg says low-ozone "footprints" in urban areas occur because high nitric-oxide concentrations scavenge ozone from the urban atmosphere. But rural areas aren’t so "lucky". These same nitric oxide compounds are one of the primary precursors that react to form high ozone concentrations that are blown to rural environments. Once there, nitric oxide is very low in concentration so ozone remains in the atmosphere for a longer period. While individual one-hour peak ozone concentrations are often higher in urban environments, the extended exposure period outside the urban center cause some rural trees to grow only half as fast as their city cousins. Photo provided by Jillian Gregg.Copyright © Cornell University


A tree grows in Brooklyn -- despite big-city air pollutants. Meanwhile, identical trees planted downwind of city pollution grow only half as well -- a surprising finding that ecologists at Cornell University and the Institute of Ecosystem Studies (IES) reported in the current issue of Nature (July 10, 2003). They attribute the effect to an atmospheric-chemistry "footprint" that favors city trees.

"I know this sounds counterintuitive but it’s true. City-grown pollution -- and ozone in particular -- is tougher on country trees," says Jillian W. Gregg, lead author of the Nature cover article, "Urbanization effects on tree growth in the vicinity of New York City." Other authors of the Nature report are Clive G. Jones, an ecologist at the Institute of Ecosystem Studies in Millbrook, N.Y., where some of the field studies were conducted, and Todd E. Dawson, professor of integrative biology at the University of California, Berkeley, and a professor at Cornell when the study began.

Gregg was a joint Cornell/IES graduate student, pursuing a Ph.D. in ecology, when she started planting identical clones of cottonwood trees (also known as poplars, or by the scientific name Populus deltoides ) in and around New York City. Test sites included the New York Botanical Garden and the Hunts Point water works in the Bronx; a Consolidated Edison fuel depot in Astoria, Queens; as well as Long Island’s Brookhaven National Laboratory in Upton; Eisenhower Park in Hempstead; and the Cornell Horticultural Research Laboratory in Riverhead. About 50 miles north of Manhattan, in the Hudson River valley, she also planted cottonwood clones at the Millbrook institute.



One aim of the study was to show the impact on plants of a tough life in the city, where a variety of gaseous, particulate and photochemical pollutants from fossil-fuel combustion bombard plants as they struggle to grow in heavy metal-laden soils. The fast-growing poplars were to serve as a kind of "phytometer" to gauge the net effect of urban and industrial pollutants on urban and rural ecosystems.

For three consecutive growing seasons Gregg returned to the sites to plant cottonwoods, harvesting them to weigh their biomass and to perform other kinds of analyses. She controlled for differences in light, precipitation, season length and soil factors, making air quality the primary factor of concern. The experimental cottonwoods growing in Queens and the Bronx "breathed" the same pollutants as did other plants (and people) in the boroughs. So did cottonwoods along the Hudson and on Long Island.

Unexpectedly, the city trees thrived. As reported in Nature , "…urban plant biomass was double that of rural sites." But in some areas of metropolitan New York City, as well as in other polluted cities, Gregg and her colleagues have found "footprints" of lower-than-expected ozone exposures. As Gregg explains the facts of atmospheric chemistry in the city, "Ozone is what we call a secondary pollutant. So while the primary precursors for ozone are emitted in the city, they must act in the presence of sunlight, over time, before ozone is formed. By then, the air mass has moved to rural environments."

The Big Apple air situation is even more complicated, Gregg notes, because the city is downwind from New Jersey, another densely populated and industrialized region. "A lot of the ozone moving into New York City was formed in the so-called Garden State," the ecologist says. However, the reactions of ozone formation are cyclical, with the presence of one of the primary precursors, nitric oxide (NO) -- which occurs in high concentrations in the urban atmosphere -- destroying ozone once it has formed. As new NO compounds develop, three-atom oxygen is reduced to the more benign, two-atom kind.

Ironically, NO concentrations are very low in most rural areas, so ozone remains in the atmosphere there and plants’ exposure period to the harmful gas is extended. (Although one-hour peak ozone exposures can be high in urban centers, exposure periods last longer in rural environments, resulting in higher cumulative exposures.) Trees and other plants growing within the lower cumulative ozone exposures of the urban-ozone footprints benefit from the NO scavenging reactions that reduce the ozone-exposure period. Trees growing in the purportedly clean rural areas aren’t so lucky.

The study was supported, in part, by the U.S. Environmental Protection Agency, the Edna Bailey Sussman Fund for Environmental Internships, the New York State Heritage Foundation, the Mellon Foundation , Cornell’s Department of Ecology and Systematics, the Institute of Ecosystem Studies, the Cornell Center for the Environment and Sigma Xi.

Roger Segelken | Cornell University
Further information:
http://www.news.cornell.edu/releases/July03/ozone_trees.hrs.html

More articles from Ecology, The Environment and Conservation:

nachricht Urban growth causes more biodiversity loss outside of cities
10.12.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Wie ganze Ökosysteme langfristig auf die Erderwärmung reagieren
10.12.2019 | Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Virus multiplication in 3D

Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.

For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Supporting structures of wind turbines contribute to wind farm blockage effect

13.12.2019 | Physics and Astronomy

Chinese team makes nanoscopy breakthrough

13.12.2019 | Physics and Astronomy

Tiny quantum sensors watch materials transform under pressure

13.12.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>