Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulated global environmental changes impact plant diversity

17.06.2003


In a high-performance machine, each part is essential to the overall function of the whole. In ecology, species diversity is necessary to the smooth operation of the ecosystem. Until recently, little attention has been paid to the potential ecological effects on plant diversity from combined global environmental changes including increased atmospheric CO2, warming, elevated nitrogen pollution, and increased precipitation. Scientists from the Carnegie Institution’s Department of Global Ecology in Palo Alto, California, and Stanford University published a study on this subject in the June 16-20, 2003, Proceedings of the National Academy of Sciences Online Early Edition. "We were surprised at how quickly some environmental changes can alter the complexion of an ecosystem," said Erika Zavaleta, the study’s lead author and a new member of the faculty at the University of California, Santa Cruz. The finding is significant for understanding what can happen to ecosystems when confronted with the interrelated climactic and atmospheric changes that are observed today and that presage larger changes in the future.



The Carnegie and Stanford scientists conducted their three-year study in the Jasper Ridge Biological Preserve - a typical California grassland where the 43 plant species are a mixture of grasses and wildflowers. "We simulated a series of possible future environments for California, with four global change factors: elevated CO2, warming, nitrogen pollution, and added precipitation, alone and in combinations. Different combinations with altered levels of two, three, and four of these variables are likely to reflect future conditions in different parts of the globe," said Chris Field, director of the Carnegie Institution’s Department of Global Ecology and coordinator of the Jasper Ridge study.

"At the end of three years, we found that treatments with three of the four experimental treatments changed total plant diversity. Elevated CO2 reduced diversity as did adding nitrogen. More water increased plant diversity and, warming alone had no effect," Zavaleta explained. The four treatment combinations that represent likely possible futures all resulted in decreased wildflower diversity; but total diversity was not affected because there was an increase in the grasses. The largest loss of wildflower diversity came with elevated CO2 plus warming and nitrogen pollution, and all four of the factors combined. "Given the importance of the wildflower species for wildlife, nutrient cycling, and natural beauty, the losses under realistic global changes are a cause for concern," said Zavaleta.


Field emphasized: "Over the last century we have witnessed an 30% increase in atmospheric CO2 , an overall global warming of about 1 F, increases in nitrogen pollution from human activities, and changes in rainfall patterns. We are in the process of determining how the interactions among these components are affecting the health of the planet. This study and others like it at Global Ecology can provide some sorely needed answers."


The Jasper Ridge Global Change Experiment was supported by the National Science Foundation, the David and Lucile Packard Foundation, the Morgan Family Foundation, the Jasper Ridge Biological Preserve, and the Carnegie Institution. The Carnegie Institution (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Embryology, Geophysical Laboratory, Terrestrial Magnetism, The Observatories, Plant Biology, and Global Ecology.


Chris Field | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>