Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulated global environmental changes impact plant diversity

17.06.2003


In a high-performance machine, each part is essential to the overall function of the whole. In ecology, species diversity is necessary to the smooth operation of the ecosystem. Until recently, little attention has been paid to the potential ecological effects on plant diversity from combined global environmental changes including increased atmospheric CO2, warming, elevated nitrogen pollution, and increased precipitation. Scientists from the Carnegie Institution’s Department of Global Ecology in Palo Alto, California, and Stanford University published a study on this subject in the June 16-20, 2003, Proceedings of the National Academy of Sciences Online Early Edition. "We were surprised at how quickly some environmental changes can alter the complexion of an ecosystem," said Erika Zavaleta, the study’s lead author and a new member of the faculty at the University of California, Santa Cruz. The finding is significant for understanding what can happen to ecosystems when confronted with the interrelated climactic and atmospheric changes that are observed today and that presage larger changes in the future.



The Carnegie and Stanford scientists conducted their three-year study in the Jasper Ridge Biological Preserve - a typical California grassland where the 43 plant species are a mixture of grasses and wildflowers. "We simulated a series of possible future environments for California, with four global change factors: elevated CO2, warming, nitrogen pollution, and added precipitation, alone and in combinations. Different combinations with altered levels of two, three, and four of these variables are likely to reflect future conditions in different parts of the globe," said Chris Field, director of the Carnegie Institution’s Department of Global Ecology and coordinator of the Jasper Ridge study.

"At the end of three years, we found that treatments with three of the four experimental treatments changed total plant diversity. Elevated CO2 reduced diversity as did adding nitrogen. More water increased plant diversity and, warming alone had no effect," Zavaleta explained. The four treatment combinations that represent likely possible futures all resulted in decreased wildflower diversity; but total diversity was not affected because there was an increase in the grasses. The largest loss of wildflower diversity came with elevated CO2 plus warming and nitrogen pollution, and all four of the factors combined. "Given the importance of the wildflower species for wildlife, nutrient cycling, and natural beauty, the losses under realistic global changes are a cause for concern," said Zavaleta.


Field emphasized: "Over the last century we have witnessed an 30% increase in atmospheric CO2 , an overall global warming of about 1 F, increases in nitrogen pollution from human activities, and changes in rainfall patterns. We are in the process of determining how the interactions among these components are affecting the health of the planet. This study and others like it at Global Ecology can provide some sorely needed answers."


The Jasper Ridge Global Change Experiment was supported by the National Science Foundation, the David and Lucile Packard Foundation, the Morgan Family Foundation, the Jasper Ridge Biological Preserve, and the Carnegie Institution. The Carnegie Institution (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Embryology, Geophysical Laboratory, Terrestrial Magnetism, The Observatories, Plant Biology, and Global Ecology.


Chris Field | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>