Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monogamous animals may be more likely to die out

26.05.2003


New research reveals a surprising risk factor for extinction: monogamy. Large mammals that live in pairs or have small harems are far more likely to die out than those with big harems in reserves in Ghana.



"In avoiding extinction, it pays to be promiscuous," says Justin Brashares of the University of British Columbia in Vancouver, who presents this work in the June issue of Conservation Biology. "This study is the first to show a strong link between social behavior and risk of extinction in mammals."

Most studies of risk factors for extinction are based on natural extinctions through the ages – but other risk factors may be at play in today’s world, where the extinction rate is unnaturally high due to overhunting, habitat fragmentation and other disturbances caused by people. Knowing which species are particularly sensitive to these disturbances would help conservationists figure out how to save them. Since 1970, more than half of the mammal populations in Ghanian reserves have become locally extinct. "This shocking loss of abundance and local diversity is occurring throughout Africa," says Brashares.


To help identify the risk factors for modern extinctions, he analyzed the extinctions and persistences of large mammals in six reserves in the savannas of Ghana, where the mammals have been censused monthly for more than 30 years and 78 local extinctions have been documented. Brashares assessed the extinction risk of nine traits (including population isolation, harem size, abundance and how much people like to eat them) in 41 mammal species (9 primates, 24 ungulates and 8 carnivores).

After accounting for the effect of reserve size, Brashares found that two of the factors studied correlated with local extinctions in the Ghanian reserves. The first is population isolation, which is not surprising because this was previously known to be a risk factor for natural extinctions.

The second is harem size: mammals that are monogamous or have small harems were more prone to extinction. For instance, several duiker species, which are monogamous, died out an average of 10 years after the reserves were established, while the African buffalo, which has harems with about 15 females, is still living in all the reserves. Similarly, several colobus monkey species, which have few mates, died out an average of 18 years after the reserves were established, while green monkeys and baboons, which have many mates, are still living in all the reserves.

How could being monogamous make animals more vulnerable to extinction? No one knows for sure but there is some evidence that hunters take more males than females from populations, which could lead to a dearth of males available for pairing in monogamous species. In contrast, species with large harems are more likely to have plenty of "spare" males. Another possibility is that when animals live in pairs or small groups, they are less likely to detect approaching hunters. "It may just be that it’s a lot easier to sneak up on one or two animals than it is 20," says Brashares.

This work suggests that managers should target conservation efforts and monitoring on species that are monogamous or live in small groups. "This could mean using them as indicator or umbrella species, or just giving these species special attention," says Brashares.

Justin Brashares | EurekAlert!
Further information:
http://conbio.net/scb
http://conservationbiology.org/

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>