Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria convert food processing waste to hydrogen

21.05.2003


Penn State environmental engineers estimate, based on tests with wastewater from small Pennsylvania food processors, that typical large food manufacturers could use their starch-rich wastewater to produce hydrogen gas worth close to $5 million or more each year. They present their findings today at the 103rd General Meeting of the American Society for Microbiology.



Steven Van Ginkel, doctoral candidate, and Dr. Sang-Eun Oh, post-doctoral researcher in environmental engineering, conducted the tests.

"In addition to hydrogen, which can be used as a fuel and industrial feedstock, methane, the main component of natural gas, can be generated from the wastewaters," says Van Ginkel. Both hydrogen and methane can be converted into electricity via fuel cells at close to 80% efficiency. "By extracting hydrogen and methane from their wastewaters, these plants can also reap significant savings by not needing to aerate. Aeration makes up 20 to 80 percent of wastewater treatment costs."


Van Ginkel presented the Penn State team’s findings in a poster, Turning America’s Waste into Energy, today (May 20) at 9 a.m . His co-authors are Dr. Oh and Dr. Bruce Logan, director of the Penn State Hydrogen Energy Center and Kappe professor of environmental engineering.

In the tests, Van Ginkel and Oh added hydrogen-producing bacteria to samples of wastewater from the Pennsylvania food processors. The bacteria were obtained from ordinary soil collected at Penn State and then heat-treated to kill all bacteria except those that produce spores. Spores are a dormant, heat resistant, bacterial form adapted to survive in unfavorable environments but able to begin growing again in favorable conditions.

"The spores contain bacteria that can produce hydrogen and once they are introduced into the wastewater, they eat the food in the water and produce hydrogen in a normal fermentation process," says Van Ginkel.

Keeping the wastewater slightly acidic in the hydrogen production step helps to prevent any methane-producing bacteria from growing and consuming hydrogen.

After only a day of fermentation in oxygen-free or anaerobic conditions, the hydrogen-producing bacteria fill the headspace in the fermentation flasks with biogas containing 60 percent hydrogen and 40 percent carbon dioxide.

In the second stage of the process, the acidity in the wastewater is changed and methane-producing bacteria added. The bacteria eat the leftovers, grow and generate methane.

The solid material or sludge left over from fermentation is only one-fourth to one-fifth the volume from typical aerobic treatment processes.

"Using this continuous fermentation process, we can strip nearly all of the energy out of the wastewater in forms that people can use now. While this approach has high capital costs at the outset, our calculations show that it could pay off well both environmentally and financially for some food processors in the long run. In many instances, existing treatment plants can easily be retrofitted to produce hydrogen and methane at a much lower capital cost," says Van Ginkel.


###
The research was supported by the National Science Foundation Biogeochemical Research Initiation Education grant.

This release is a summary of a presentation from the 103rd General Meeting of the American Society for Microbiology, May 18-22, 2003, in Washington, DC. Additional information on these and other presentations at the 103rd ASM General Meeting can be found online at http://www.asm.org/Media/index.asp?bid=17053 or by contacting Jim Sliwa (jsliwa@asmusa.org) in the ASM Office of Communications. The phone number for the General Meeting Press Room is (202) 249-4064 and will be active from 12:00 noon EDT, May 18 until 12:00 noon EDT, May 22.


Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org/

More articles from Ecology, The Environment and Conservation:

nachricht Clean air for a sustainable future in Manila
22.08.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht A Rescue Plan for the Ocean
16.08.2019 | Institute for Advanced Sustainability Studies e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>