Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical deforestation and global warming

14.02.2003


Smithsonian scientist challenges results of recent study



Late last year, Frédéric Achard and colleagues published a controversial article in which they contended that earlier estimates of worldwide tropical deforestation and atmospheric carbon emissions were too high. In the February 14 issue of Science, Philip Fearnside from the National Institute for Amazonian Research in Brazil, and William Laurance from the Smithsonian Tropical Research Institute in Panama argue that the Achard study contains serious flaws rendering its conclusions about greenhouse gases unreliable.
The article in question ("Determination of deforestation rates of the world’s humid tropical forests", Science, vol. 297, pages 999-1002), which received extensive press coverage, asserted that only about 0.6 to 1.0 billion tons of greenhouse gases (most carbon dioxide and carbon monoxide) were being produced by the razing and felling of tropical forests each year. This estimate is considerably lower than those of earlier studies, which estimated up to 2.4 billion tons annually.

Fearnside and Laurance list seven serious errors or limitations of the Achard study, which, they say, collectively lead to a major underestimate of greenhouse gas emissions.



Among the errors they identify is that the Achard team failed to include drier tropical forests--which are also being rapidly cleared and burned--in their estimate. Other concerns include underestimating the amount of biomass--and hence the amount of carbon--contained in tropical forests. The study assumes that regenerating forests on abandoned lands will re-absorb large amounts of atmospheric carbon. In fact, such forests are often re-cleared after a few years. The study also fails to consider the effects of important greenhouse gases like methane and nitrous oxide, which are also produced by deforestation.

Fearnside and Laurance further assert that the effects on global warming of selective logging, habitat fragmentation, and other types of forest degradation are not included in the Achard study. Selective logging, for example, does not cause deforestation per se but produces hundreds of millions of tons of greenhouse gas emissions each year.

"When you look at all these factors, you can’t help but conclude that their numbers are too small," said Laurance. "They’re suggesting that tropical deforestation and degradation accounts for only about a tenth of the global production of greenhouse gases. Personally, I’d argue that their estimate is two to three times too low."

Each year, humans produce seven to eight billion tons of greenhouse gas emissions, which are considered the major cause of global warming. Most emissions are produced by the burning of fossil fuels and tropical deforestation, but the relative importance of these two sources remains controversial.



For further information:
William F. Laurance
Smithsonian Tropical Research Institute
Balboa, Panama
Phone: 507-314-9206 and 507-212-8252
Email: laurancew@tivoli.si.edu

Philip M. Fearnside
National Institute for Amazonian Research
Manaus, Brazil
Phone: 55-92-642-8913 and 55-92-643-1822
Email: pmfearn@inpa.gov.br

Researchers at the Smithsonian Tropical Research Institute, with headquarters in Panama City, Panama, study the past, present and future of tropical biodiversity and its implications for humankind.

Dr. Bill Laurance | EurekAlert!
Further information:
http://www.si.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>