Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnology could save the ozone layer

30.01.2003


Whilst experimenting with nanospheres and perfluorodecalin, a liquid used in the production of synthetic blood, researchers at Germany’s University of Ulm have stumbled across a phenomenon that could ultimately help remove ozone-harming chemicals from the atmosphere. The perfluorodecalin, against all expectations, was taken up by a water-based suspension of 60 nm diameter polystyrene particles.



The scientists believe that this occurred because nanoscopic perfluorodecalin droplets became encapsulated by self-assembled polystyrene nanospheres. Perfluorodecalin has very similar properties to chlorofluorocarbons (CFCs), the inert liquids that are known to destroy the Earth’s protective ozone layer. And the Ulm team reckons that aerosol particle-carrying water droplets or ice crystals in clouds may be able to collect up chlorofluorocarbons in the same way, eventually returning them harmlessly to Earth as rain, hail or snow.

"I realized that I had developed a useful model system for the simulation of microphysical processes in the stratosphere," Andrei Sommer of the University of Ulm told nanotechweb.org. "In particular, for [simulating] the very complicated interplay between cloud droplets, nanoscopic aerosols emitted by man-made and natural sources, and chlorofluorocarbons - the principal ozone killers."


The solid aerosols that arise from urban and industrial sources, for example petrol and diesel particles, are roughly the same size as the polystyrene nanospheres used in this experiment.

"Nanoscale aerosols - which are also accused of suppressing rain and reducing the amount of sun reaching the Earth’s surface - could in fact be helpful in reducing the stratospheric concentrations of ozone killers," added Sommer.

Sommer says that if tests confirm the predictions from the simple model system, the result could be a practical strategy to stop, or possibly even repair, one of the two potentially most destructive global problems caused by mankind. He reckons scientists could use space technology to carry large amounts of specially designed non-toxic nanoscale particles into the heart of the ozone hole.

In the short term, Sommer says it’s worth optimizing the properties of such nanoscale particles - for example, aerosol size, chemical composition and solubility - while reducing the cost. Then it’s a case of encouraging international space agencies to begin airborne experiments.

Back on Earth, meanwhile, the perfluorodecalin-based nanosphere suspension research could also have applications in nanopatterning and biofunctionalization techniques for biomaterials.

The scientists reported their work in Nano Letters.

Joanne Aslett | alfa
Further information:
http://nanotechweb.org/articles/news/2/1/16/1

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>