Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer model helps combat air pollution across Europe

29.01.2003


The key role of multidisciplinary research in developing a landmark intergovernmental strategy to combat air pollution across Europe will be considered by Professor Helen ApSimon of Imperial College London in her inaugural lecture, A lot of Hot Air – Transboundary Air Pollution Over Europe.



The new Professor of Air Pollution Studies will focus on how her research using computer modelling of air pollution contributed to the formulation of the Gothenburg protocol under the United Nations’ Convention on Long-Range Transboundary Air Pollution.

“The UN’s Convention successfully addresses a complex combination of pollutants with wide ranging effects,” said Professor ApSimon, who is based in the Department of Environmental Science and Technology.


“It has contributed to the development of international environment regulations and has created the essential framework for controlling and reducing the damage to human health and the environment caused by transboundary air pollution.”

The Gothenburg protocol, introduced in 1999, calls for cuts in emissions from four major pollutants: sulphur dioxide, nitrogen oxides, volatile organic compounds and ammonia, by 2010, from their 1990 levels.

Once fully implemented, it is estimated the Protocol will reduce premature deaths resulting from ozone and particle matter exposure by approximately 47,000. The European treaty should also ensure over the next 15 years sulphur pollution from factories and power stations will drop to around 10 per cent of 1980 levels.

Working extensively over the past 12 years for Task Forces under the UN’s Convention, Professor ApSimon initially conducted independent modelling to analyse emission reduction strategies and develop cost effective solutions.

“By having an independent model we were able to examine many ‘what if’ scenarios and investigate assumptions and uncertainties,” said Professor ApSimon.

“We also did a lot of work on ammonia as a pollutant, for which the uncertainties were much greater. In this way we contributed to far more robust proposals for emission reductions as a basis for negotiation between member countries.”

Data collected from Professor ApSimon’s model was then collated with information yielded from the official UN model to create an ‘Integrated Assessment Model’. This created a fuller picture of potential emission reduction strategies by comparing the costs and benefits for different countries.

“Integrated assessment modelling integrates information on pollutant sources and emissions, the pattern of atmospheric transport of those emissions across Europe to affect sensitive ecosystems and the criteria for protecting these sensitive targets. From this information the models derive emission reductions across the different countries which meet targets for improved environmental protection at minimum cost,” explained Professor ApSimon.

“This approach is now being adopted enthusiastically by the European Commission, and I hope I will contribute to reaching agreement on other international pollution problems.”

Professor ApSimon added: “I feel honoured to have been appointed to this rank at Imperial College, and thankful to the wide range of people with whom I have worked with from very different scientific disciplines, who have helped me to achieve it.”

Judith H Moore | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Foxes in the city: citizen science helps researchers to study urban wildlife
14.12.2018 | Veterinärmedizinische Universität Wien

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>