Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increase in rainfall variability related to global climate change

13.12.2002


Impacts on ecosystems are greater than previously anticipated



Projected increases in rainfall variability resulting from changes in global climate can rapidly reduce productivity and alter the composition of grassland plants, according to scientists funded by the National Science Foundation (NSF). Although the diversity of plant species is increased in this scenario, the most important or dominant grasses were more water-stressed and their growth was reduced. Carbon dioxide release by roots and microbes below ground also was reduced.

Results of the experiment, conducted at NSF’s Konza Prairie Long Term Ecological Research (LTER) site, are published in this week’s (December 13th) issue of the journal Science.


The biologists, Alan Knapp, Philip Fay, and John Blair and colleagues of Kansas State University, Scott Collins of NSF, and Melinda Smith at the National Center for Ecological Analysis and Synthesis at the University of California, Santa Barbara, found that more extreme swings in rainfall patterns, without any changes in the total amount of rainfall received in a growing season, reduced the biomass of plants but increased the variety of species able to live in a particular experimental plot of land.

"This study is the first to focus on and manipulate climate variability in an intact ecosystem, without altering the average climate," said Quentin Wheeler, director of NSF’s division of environmental biology, which funded the research along with the U.S. Department of Agriculture and the U.S. Department of Energy. "Because these responses are similar to those that would occur under drought conditions, the results suggest that increased rainfall variability combined with projected higher temperatures and decreased rainfall amounts, may lead to even greater impacts on ecosystems than previously anticipated."

In this study of how grasslands respond to more variation in rainfall patterns, the scientists hoped to better understand how rapidly and to what extent ecosystems might respond to a future with more climate extremes. In the four-year field study, the researchers altered rainfall variability by increasing the amount of precipitation that falls in one storm, and lengthened the periods of time between rainfalls by 50 percent. That effectively increased the severity of dry periods between storms without altering the total amount of precipitation received during a growing season.

"When these native grassland plots, exposed to more variable rainfall patterns, were compared with plots that received rainfall in a natural pattern, the overall growth of all plants decreased," said Knapp. "More variable rainfall patterns led to lower amounts of water in the soil in the upper 30 centimeters. Since this is the soil depth where most plant roots occur, and where important soil microbes are most abundant, grasses there were water-stressed and the activity of below-ground organisms was reduced."

In contrast, said Collins, "the diversity of plants in plots with greater variability in rainfall patterns increased." Collins cites two possible explanations for this finding: "A high degree of variability in resources can lead to a greater number of co-existing species. Or reduced total productivity may have allowed less common species to increase in abundance." Regardless of the mechanism, said Collins, these results show that plant community structure can be significantly changed, and the cycling of carbon slowed, in as little as four years when grasslands are exposed to a more variable climate.

Concerns about predicted climate changes resulting from human activities often focus on the effects of increases in average air temperatures or changes in average precipitation amounts. But widely used climate models also predict increases in climate extremes, said Knapp, such as more frequent large rainfall events or more severe droughts. "It’s important that we look at variability in a new way: not only from year to year or decade to decade, but from storm to storm."


###
NSF PR 02-98

Media Contact:
Cheryl Dybas
703-292-8070, cdybas@nsf.gov

Program Contact:
Henry Gholz
703-292-7185, hgholz@nsf.gov




Cheryl Dybas | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Treatment of saline wastewater during algae utilization
14.05.2019 | Jacobs University Bremen gGmbH

nachricht Plastic gets a do-over: Breakthrough discovery recycles plastic from the inside out
07.05.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>