Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global Pollution Hot Spots Identified

10.12.2002



Researchers at the National Center for Atmospheric Research (NCAR) and other institutions have pinpointed the locations of high concentrations of air pollutants around the world by combining data from four satellite imaging systems. Their findings are being presented this week in San Francisco at the annual meeting of the American Geophysical Union (AGU).

The researchers used information from instruments on NASA and European Space Agency satellites to measure atmospheric levels of three types of pollutants that can affect human health: carbon monoxide, nitrogen dioxide, and aerosols. They found especially high concentrations of each over the eastern United States, western and southern Europe, and eastern China, which are among the most heavily industrialized regions in the world.

Steven Massie, an atmospheric chemist at NCAR on the data analysis team, says such satellite images of air pollutants are important for efforts to improve air quality. "As the capability of these imaging systems becomes more and more powerful, the international community will have a way of studying pollution on a global basis and the technical means to monitor emissions from each country,” he explains.



The pollutants vary somewhat by season. In eastern China, for example, urban-industrial emissions of nitrogen dioxide spike during the winter. In the spring, however, aerosol levels are especially high, both because of industrial activities and because of winds that blow in dust from the Gobi and other deserts to the west.

Once airborne, the pollutants often drift eastward and diminish the air quality in neighboring areas. The research, for example, shows that carbon monoxide, nitrogen dioxide, and aerosols from China flow eastward over Japan and the north Pacific Ocean.

Nitrogen dioxide and carbon monoxide are produced largely by industrial activities and vehicle exhaust. Nitrogen dioxide leads to the formation of smog and can irritate the lungs; high levels of carbon monoxide cause a variety of health effects, especially for people with cardiovascular diseases.

Aerosols, or microscopic particles in the air, can cause respiratory ailments as well as reduce visibility and damage buildings. They are associated both with industrial activities and with such natural sources as desert dust and forest fires. Previous research has demonstrated that high aerosol concentrations in nonindustrialized regions over Africa, western China, and eastern Siberia are due to desert dust storms, wildfires, and burning of vegetation for agriculture, home heating, and cooking.

The researchers used four instruments to collect their data. The Moderate Resolution Imaging Spectroradiometer (MODIS), Total Ozone Mapping Spectrometer (TOMS), and Measurements of Pollution in the Troposphere (MOPITT) device take atmospheric readings from aboard NASA satellites; the Global Ozone Monitoring Experiment (GOME) is a spectrometer on the second European Remote Sensing Satellite. MOPITT is a joint project of NCAR and the Canadian Space Agency.

In addition to NCAR, the research team includes scientists from NASA Goddard Space Flight Center and the University of Bremen in Germany.

Anatta | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

nachricht Traffic density, wind and air stratification influence the load of the air pollutant nitrogen dioxide
26.06.2020 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>