Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMass Team to Study Bioremediation of Acid, Heavy Metals From Collapsed Mine

22.11.2002




Work funded with $1.59-million from the National Science Foundation

Highly acidic drainage from an abandoned sulfide mine in Rowe is slowly cleaning itself over time, and an interdisciplinary research team from the University of Massachusetts Amherst is studying why. The group brings together experts from the fields of microbiology, geology, engineering, and science education, to determine the extent and rate of bioremediation. Researchers say their findings may enable quicker natural cleanups not just at this mine, but at others throughout the country and the world. The interdisciplinary project has received a $1.59-million grant from the "Biocomplexity in the Environment" program of the National Science Foundation. This highly competitive program has funded only 10 projects this year nationwide.

"The mine collapsed in 1911 and filled with groundwater," explained Klaus Nüsslein, assistant professor of microbiology. "The overflowing groundwater drains out of the old mine shafts, and flows down the stream channel." The drainage waters are more acidic than vinegar, with pH values around 2, and carry large loads of metals, including copper, zinc, and iron, Nüsslein said. "In other areas of the country, similar acid-mine drainage from former coal or gold mines can mobilize additional undesirable contaminants." Researchers stress, however, that there is no threat to the local environment or the area’s water supply, because the iron sulfide in the Davis Mine contains few hazardous impurities. This makes the site an ideal subject for examining the natural processes that are contained in the drainage. Rowe is located in western Massachusetts, near the Vermont border.



The other UMass researchers involved in the project are Richard Yuretich of geosciences, who is the principal investigator of the project; Sarina Ergas and David Ahlfeld of civil and environmental engineering; and Allan Feldman of the School of Education. Jonathan Lloyd of the University of Manchester, England, is also collaborating, studying a similar abandoned mine in Wales. The group will combine field work, computer modeling, and laboratory research to study the issue over the next five years. In the end, this interdisciplinary group will demonstrate the global importance of using bacteria to clean up the environment.

Nüsslein, a microbiologist, will try to determine which particular microorganisms are oxidizing the acids and heavy metals, providing a natural source of bioremediation. "Obviously these microorganisms are very successful at remediating the site. We want to know which microorganisms are there, which ones are thriving, or just making do, and what their actual function is," he said. Yuretich, a geologist who has brought classes to the site for more than 20 years, will study what role geology is playing in the natural clean-up: "The acid and the heavy metals react with bedrock and other glacial deposits and are neutralized. It’s similar to a person with an upset stomach taking an antacid; the acid level drops," said Yuretich.

There are also hydrology issues at work, researchers say. Engineers will study the way the groundwater and surface water are flowing. "There are a series of complex biochemical processes going on in order to enable the bioremediation to take place, and we need hard data to understand those processes," said Ergas. "We need to know the direction of groundwater flow, the amount of water movement, and its chemical composition." added Ahlfeld.

Feldman notes that a strong science education component has been built into the research project. Twelve high-school and middle-school teachers, who are pursuing master’s degrees in science education, will work as researchers for spring, summer, and fall, taking what they learn for use in their classroom teaching. "Participation in active research projects is often cited as the best way to learn science and the ways in which scientists think," Feldman said. Surveys and interviews of the teacher-scholars will be used to evaluate their perceptions of the nature of science, engineering, and scientific research. Their K-12 classes will be observed to determine whether their experiences have changed the way in which they understand and teach science, and the effects on their students’ learning.

Note: Klaus Nüsslein can be reached at 413/545-1356 or
nusslein@microbio.umass.edu

Elizabeth Luciano | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Clean air for a sustainable future in Manila
22.08.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht A Rescue Plan for the Ocean
16.08.2019 | Institute for Advanced Sustainability Studies e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>