Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Gives Tiny Phytoplankton a Large Role in Earth’s Climate System

07.11.2002


Sam Iacobellis and Robert Frouin


Study, which shows microscopic plants keep planet warm, offers new considerations for iron fertilization efforts in the oceans

The ecological importance of phytoplankton, microscopic plants that free-float through the world’s oceans, is well known. Among their key roles, the one-celled organisms are the major source of sustenance for animal life in the seas.

Now, in a new study conducted by researchers at Scripps Institution of Oceanography at the University of California, San Diego, our understanding of the significance of phytoplankton has been taken to a new level.



Robert Frouin and Sam Iacobellis have argued in a paper published in the Journal of Geophysical Research that phytoplankton exert a significant and previously uncalculated influence on Earth’s climate.

The Frouin-Iacobellis study uses satellite imagery to show that phytoplankton, which are said to inhabit three-quarters of Earth’s surface, hold a fundamental warming influence on the planet by capturing and absorbing the sun’s radiation. The authors show that radiation that otherwise might be reflected back to space is absorbed by phytoplankton and results in a global climate warmer by 0.1 to 0.6 degrees Fahrenheit (compared with an open seawater scenario without phytoplankton).

“Our paper shows that if we did not have phytoplankton in the ocean, we would have a cooler climate. This is a problem that we have to look at more carefully if we want to conduct more accurate predictions of climate change,” said Frouin, a research meteorologist at Scripps. “Certainly the effect we have shown from phytoplankton is not negligible, so we need to look at it closely.”

“Eventually, I hope that incorporating this new information will lead to better predictions of future climate, and that will help policymakers make more far-sighted decisions,” said Iacobellis, a member of the Climate Research Division at Scripps.

Furthermore, in the paper Frouin and Iacobellis argue that the impact of phytoplankton extends beyond its warming influence. Changes in Earth’s surface reflection caused by increases or decreases in phytoplankton concentrations may significantly affect the interactions of the planet’s climate system with human-produced concentrations of greenhouse gases and aerosols.

They also argue that the climatological significance of phytoplankton is increased or decreased from region to region, since the magnitude of phytoplankton concentrations ultimately will dictate the strength of their warming influence.

The new findings, constructed through modeling designs and satellite imagery data from the Coastal Zone Color Scanner, also hold implications for ongoing discussions of reducing global warming through ocean “fertilization.” Such efforts have held that global warming may be decreased by fertilizing the oceans with iron, which would lead to an increase in the ocean’s biological pump. Through such an increase, the argument holds, phytoplankton would be able to draw carbon dioxide out of the atmosphere and therefore reduce global warming.

Frouin and Iacobellis, however, believe their new findings may run counter to those arguments.

“We are saying that if you increase the amount of phytoplankton in the ocean, which would probably be a consequence of this iron fertilization, instead you would contribute to warming the ocean by absorbing more radiation,” said Frouin.

“You would exert a negative feedback because you would go in the opposite direction of the effect that you want, which is to decrease global warming,” said
Iacobellis. “Think about this: If you fertilize the ocean you will take up more carbon dioxide, but you are going to get more phytoplankton. Our numbers at least give a start to rough calculations of how much of your initial decrease in temperature is going to be negated by our increase. We’re not saying that (iron fertilization) idea should be off the table, but this new information is something that should be considered.”

Last year Frouin and Iacobellis published a study detailing the extent to which ocean whitecaps influence climate by reflecting solar radiation from Earth’s surface. They say the consequences from the new phytoplankton study are an order of
magnitude larger.

The results were calculated through average impacts of phytoplankton on a broad, global scale, but the authors say detailed analyses will show varying results due to the fact that various types of phytoplankton species absorb more radiation than others. Some, in fact, reflect the sun’s radiation rather than absorb it. Also to be determined are the complex biological feedback consequences that lead to more or less phytoplankton in certain areas.

“This just shows how intricate the climate system is,” said Iacobellis. “It’s like a ball of yarn all pushed together. It’s difficult to unpiece the climate or put together what might happen in the future when all these things act together. One by itself may not be that important but when thousands of these small things act together, then?”

The research was supported by NASA, the Department of Energy, and the California Space Institute.

Mario Aguilera | Scripps News
Further information:
http://scrippsnews.ucsd.edu/pressreleases/frouin_phytoplankton.html
http://scrippsnews.ucsd.edu/pressreleases/frouin_whitecaps.html
http://www.nasa.gov/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>