Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers close in on natural solution to PCB contamination

05.11.2002


An environmentally friendly solution to one of the world’s most notorious chemical contamination problems may be a step closer to reality, reports a research team from Purdue University and the University of British Columbia.


A micrograph image of Rhodococcus sp. RHA1, which are good PCB-degraders. Researchers Jeffrey Bolin and Lindsay Eltis hope bacteria, such as these, can be bred to digest PCBs effectively enough to cleanse the environment of these hazardous chemicals. (Photo/UBC Bioimaging Facility)



The team has identified one of the key stumbling blocks that prevent microorganisms from decomposing PCBs (polychlorinated biphenyls), a persistent and potentially hazardous industrial chemical that has become nearly ubiquitous in the environment. While capitalizing on the discovery will take time, it could eventually show researchers how to teach microorganisms to break down PCBs into ecologically safe molecules, a process known as bioremediation.

"We have isolated one of the major hurdles to cleaning up PCBs naturally," said Jeffrey T. Bolin, professor of biological sciences and a member of Purdue’s Markey Center for Structural Biology and Cancer Center. "This gives us a clear picture of one route to degrading PCBs in the environment."


The research appears on the press Web site of Nature Structural Biology.

PCBs were manufactured and used widely in industry for decades, but the 1960s and 1970s brought increased awareness of their toxicity to animals and mass poisonings linked to PCB-contaminated food. PCBs are no longer manufactured in the United States, but their persistence makes them a worldwide problem because many suggested cleanup methods, such as incineration, are ineffective, sometimes even generating other toxic compounds such as dioxins.

"The globe’s entire surface is now contaminated with PCBs," Bolin said. "They are in the soil you walk on and in Arctic ice. They accumulate in organisms as you go up the food chain, especially in aquatic environments, which means that creatures that eat fish – like humans – are particularly likely to absorb large quantities."

Many harmful chemicals in the environment are broken down into benign substances naturally by microorganisms, but PCBs have persisted for decades because decomposers, such as bacteria and fungi, do not find them tasty – at least, not tasty enough.

"PCB molecules actually look very similar to many organic molecules that certain bacteria eat," Bolin said. "But there are enough little differences that bacteria can’t quite digest them. It’s frustrating, because if bacteria could fully digest PCBs, it might solve a worldwide pollution problem. We asked ourselves: What could we do to improve bacterial digestion of PCBs?"

To answer the question, the group has adopted a twofold strategy: first, identify what aspect of PCB breakdown the bacteria are having trouble accomplishing, then breed bacteria to improve their talent at accomplishing it. Bolin said the group’s findings are a breakthrough for the first aspect.

"The process of digestion requires a long chain of chemical steps, and if the bacteria can’t accomplish one of those steps, the chain is broken and digestion can’t occur," Bolin said. "What we have done is isolate one of the steps that causes problems for the bacteria, a clog in the biochemical pipeline if you will."

Now that the group has perspective on this first aspect of the problem, they can focus on improving bacteria for battle against the PCB enemy. Bolin and his research partner, Lindsay Eltis, predict that microorganisms can learn to consume PCBs if properly bred.

"A species will fit itself to a new environment, given many generations to adapt," said Eltis, associate professor of microbiology and biochemistry at the University of British Columbia. "In the case of bacteria, you can get new generations once every few minutes under proper laboratory conditions – just like breeding dogs, only much more rapidly. We hope to use certain species of bacteria with a slight taste for PCBs and improve this trait through breeding until it’s strong enough to make them consume PCBs as a food source."

If the group succeeds, it could mean that PCBs’ days are numbered in the environment. But Eltis emphasizes that there remain difficulties ahead.

"We still have a great deal to do, and it will not be a simple matter to fit a species of bacteria to the task," he said. "But the potential environmental rewards are inspiring. If we succeed, we could get the planet back to where it was before PCBs were ever manufactured."

This research has been funded by the National Institutes of Health and Canada’s National Science and Research Council.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Sources: Jeffrey Bolin, (765) 494-4922, jtb@purdue.edu

Lindsay Eltis, (604) 822-0042, leltis@interchange.ubc.ca

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://press.nature.com/

More articles from Ecology, The Environment and Conservation:

nachricht Road access for all would be costly, but not so much for the climate
10.07.2020 | Potsdam-Institut für Klimafolgenforschung

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>