Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PhD student filters water vapour information from satellite data

24.10.2002


PhD student Rüdiger Lang has developed a method to obtain information about water vapour from satellite data not specifically measuring this. The research is part of a project from the FOM Institute for Atomic and Molecular Physics (AMOLF), the Space Research Organisation Netherlands (SRON) and the Free University of Amsterdam.



Water vapour has a greenhouse effect three times stronger than that of carbon dioxide. Therefore a good picture as to the presence, distribution and influence of water vapour in the atmosphere is important. Observations of the atmosphere and the earth`s surface from a number of satellites orbiting the earth contain hidden information about water vapour.

In laboratory experiments, Rüdiger Lang determined the exact `fingerprints` which water molecules leave behind on the signal that satellites measure for the atmosphere as a whole. An instrument in such a satellite looks through the earth’s atmosphere and measures the characteristics of the sunlight which is reflected by the earth`s surface (land, sea, ice, clouds).


The reflected light contains a large number of absorption lines. These are narrow parts of the spectrum where the light is weakened by specific molecules or atoms in the atmosphere. The form of the lines depends on the concentrations of molecules or atoms and their distribution throughout the atmosphere. As water molecules influence their environment, they leave behind a `fingerprint` on the absorption lines. The researchers found that the most accurate predictions were obtained when the very weak absorption lines were used.

An important element in the research was the development of efficient detection methods. Both existing and future satellites gather enormous quantities of measurement data. Unless this can be processed efficiently, it takes far too long to obtain up-to-date data. The methods developed will also be usable for other greenhouse gases.

The greenhouse effect is a socially important issue, yet without the greenhouse effect the earth would be uninhabitable. The quantity of water in the atmosphere alone ensures that the average temperature on the earth is 14oC higher than would be the case if there were no water in the atmosphere. As the average temperature on earth is 14oC then without this water large parts of our planet would be in an ice age. Information about the quantity of water is particularly important if the greenhouse effect is to be fully understood. Water occurs in the atmosphere in three different forms: as ice crystals, water drops and gas (water vapour). Therefore, the influence of water vapour in the atmosphere is complex and the effect is further complicated by the fact that the quantity of water in the atmosphere can vary considerably from place to place.

Michel Philippens | alfa

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>