Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PhD student filters water vapour information from satellite data

24.10.2002


PhD student Rüdiger Lang has developed a method to obtain information about water vapour from satellite data not specifically measuring this. The research is part of a project from the FOM Institute for Atomic and Molecular Physics (AMOLF), the Space Research Organisation Netherlands (SRON) and the Free University of Amsterdam.



Water vapour has a greenhouse effect three times stronger than that of carbon dioxide. Therefore a good picture as to the presence, distribution and influence of water vapour in the atmosphere is important. Observations of the atmosphere and the earth`s surface from a number of satellites orbiting the earth contain hidden information about water vapour.

In laboratory experiments, Rüdiger Lang determined the exact `fingerprints` which water molecules leave behind on the signal that satellites measure for the atmosphere as a whole. An instrument in such a satellite looks through the earth’s atmosphere and measures the characteristics of the sunlight which is reflected by the earth`s surface (land, sea, ice, clouds).


The reflected light contains a large number of absorption lines. These are narrow parts of the spectrum where the light is weakened by specific molecules or atoms in the atmosphere. The form of the lines depends on the concentrations of molecules or atoms and their distribution throughout the atmosphere. As water molecules influence their environment, they leave behind a `fingerprint` on the absorption lines. The researchers found that the most accurate predictions were obtained when the very weak absorption lines were used.

An important element in the research was the development of efficient detection methods. Both existing and future satellites gather enormous quantities of measurement data. Unless this can be processed efficiently, it takes far too long to obtain up-to-date data. The methods developed will also be usable for other greenhouse gases.

The greenhouse effect is a socially important issue, yet without the greenhouse effect the earth would be uninhabitable. The quantity of water in the atmosphere alone ensures that the average temperature on the earth is 14oC higher than would be the case if there were no water in the atmosphere. As the average temperature on earth is 14oC then without this water large parts of our planet would be in an ice age. Information about the quantity of water is particularly important if the greenhouse effect is to be fully understood. Water occurs in the atmosphere in three different forms: as ice crystals, water drops and gas (water vapour). Therefore, the influence of water vapour in the atmosphere is complex and the effect is further complicated by the fact that the quantity of water in the atmosphere can vary considerably from place to place.

Michel Philippens | alfa

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>