Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Landcover changes may rival greenhouse gases as cause of climate change

01.10.2002


These simulations are examples of how global land-use changed from 1700 to 1990. The human-disturbed landscape includes intensive cropland (red), and marginal cropland used for grazing (pink). Other landscape includes, for example, tropical evergreen and deciduous forest (dark green), savanna (light green), grassland and steppe (yellow), open shrubland (maroon), temperate deciduous forest (blue), temperate needleleaf evergreen forest (light yellow), and hot desert (orange). Of particular importance in this paper is the expansion of the cropland and grazed land between 1700 and 1900. Credit: from Klein Goldewijk, K., 2001: Estimating global land use change over the past 300 years: The HYDE Database. Global Biogeochemical Cycles, 15, 417-433


Global Land Use in 1990
Credit: from Klein Goldewijk, K., 2001: Estimating global land use change over the past 300 years: The HYDE Database. Global Biogeochemical Cycles, 15, 417-433


While many scientists and policy makers have focused only on how heat-trapping gases like carbon dioxide are altering our global climate, a new NASA-funded study points to the importance of also including human-caused land-use changes as a major factor contributing to climate change.

Land surface changes, like urban sprawl, deforestation and reforestation, and agricultural and irrigation practices strongly affect regional surface temperatures, precipitation and larger-scale atmospheric circulation. The study argues that human-caused land surface changes in places like North America, Europe, and southeast Asia, redistribute heat regionally and globally within the atmosphere and may actually have a greater impact on climate than that due to anthropogenic greenhouse gases combined.

The study also proposes a new method for comparing different human-influenced agents of climate change in terms of the redistribution of heat over land and in the atmosphere. Using a single unit of measurement may open the door to future work that more accurately represents human-caused climate change.



"Our work suggests that the impacts of human-caused landcover changes on climate are at least as important, and quite possibly more important than those of carbon dioxide," said Roger Pielke, Sr., an atmospheric scientist at Colorado State University, Fort Collins, Colo., and lead author of the study. "Through landcover changes over the last 300 years, we may have already altered the climate more than would occur associated with the radiative effect of a doubling of carbon dioxide." If carbon dioxide (CO2) emissions continue at current rates, atmospheric CO2 concentrations are expected to double by 2050. Land surface changes will also continue to occur.

Types of land surface strongly influence how the Sun’s energy is distributed back to the atmosphere. For example, if a rainforest is removed and replaced with crops, there is less transpiration, or evaporation of water from leaves. Less transpiration leads to warmer temperatures in that area. On the other hand, if farmland is irrigated, more water is transpired and also evaporated from moist soils, which cools and moistens the atmosphere, and can affect precipitation and cloudiness.

Similarly, forests may influence the climate in more complicated ways than previously thought. For example, in regions with heavy snowfall, reforestation or afforestation would cause the land to reflect less sunlight, and more heat would be absorbed, resulting in a net warming effect despite the removal of CO2 from the atmosphere through photosynthesis during the growing season. Further, reforestation could increase transpiration in an area, putting more water vapor in the air. Water vapor in the troposphere is the biggest contributor to greenhouse gas warming.

Local land surface changes can also influence the atmosphere in far-reaching ways, much like regional warming of tropical eastern and central Pacific Ocean waters known as El Niño. El Niño events create moist rising air, thunderstorms and cumulus clouds, which in turn alter atmospheric circulations that export heat, moisture, and energy to higher latitudes. Tropical land surface changes should be expected to play a greater role on global climate than El Niño, given that thunderstorms prefer to form over land, and the fact that the large area of tropical land-use changes far exceeds the relatively small area of water responsible for El Niño. Impacts of land use changes are harder to detect because they are permanent, as opposed to El Niño, which comes and goes.

Pielke Sr., and colleagues propose a new method for measuring the impacts of both greenhouse gases and landcover changes by using a formula that quantifies all the various anthropogenic climate change factors in terms of the amount of heat that is redistributed from one area to another. This heat redistribution is stated in terms of watts per meter squared, or the amount of heat associated with a square meter area. For example, if a flashlight generated heat of one watt that covers a square meter, then the heat energy emitted would be one watt per meter squared.

By using a measure based on the spatial redistribution of heat to quantify the different human influences on climate, including landcover changes and greenhouse gases, the researchers hope to achieve a more accurate portrayal of all of the anthropogenic influences on climate change in future research.


*** The paper was published in a recent issue of the Philosophical Transactions of the Royal Society of London. The research was funded by grants from NASA and the National Science Foundation. ***

Krishna Ramanujan | EurekAlert!

More articles from Ecology, The Environment and Conservation:

nachricht Road access for all would be costly, but not so much for the climate
10.07.2020 | Potsdam-Institut für Klimafolgenforschung

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>