Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PEOPLE project: Population Exposure to Air Pollutants in Europe

18.09.2002


Project Synopsis:

The PEOPLE project involves the monitoring of ambient outdoor and indoor levels of air pollutants as well as measuring population exposure in European capitals. With the selection of benzene as a first pollutant to be measured, EC directive 2000/69/EC is also supported. Benzene is a carcinogenic pollutant to which exposure is associated with the risk of the development of leukaemia.

Brussels and Lisbon have been selected as the first cities for the PEOPLE project during the autumn of 2002. The PEOPLE project design is seen as a pilot project that may be extended to other cities in the future and also to other pollutants of relevance to long term exposure to air pollutants. Currently the following cities have expressed their interest to be associated in the project: Brussels, Bucharest, Budapest, Dublin, Helsinki, Krakow, Lisbon, Ljubljana, Madrid, Paris, and Rome. Diffusive sampling will be used to monitor personal exposure and environmental pollution levels. Each citizen selected to participate (maximum of 200 in each city) will be provided with a simple measurement device, and requested to expose the samplers to ambient air for 12 hours on their body during a well-specified day of the week. Other measurements for the project will be made by local authority project partners. All these measurements will be possible thanks to the use of a new diffusive sampler that enables benzene measurements to be taken over short periods of time.



Project Design:
The PEOPLE project is designed to be flexible while meeting certain core project objectives. The flexible design reflects the divergent nature of the European cities that will participate in the project.

The PEOPLE project has two main avenues of research associated with it’s assessment of population exposure to air pollutants. The first avenue of research is concerned with personal exposure to air pollution. Citizens from participating cities will be invited to fill out a screening questionnaire to determine if they will be suitable as a volunteer for the study. The questionnaire is designed to determine how long and by what means people travel to work. Then citizens will be selected to represent differing groups of transport, for example those that travel using personal car or those that travel using public transport or those that travel on foot or by bike. A small group of about thirty citizens will represent each travelling group. The results from these groups will be compared to both a control group that consists of people who work or stay at home and a smoking group of people. The study aims to get data for pollution levels that are represents typical behaviour for people who live in cities. The focus of the project is toward the two most visible sources of pollution: transportation and smoking. However in isolation these results would not be as useful as when considered along with the second avenue of research which is concerned with monitoring of city environments. Since legislation sets standards for acceptable levels of air pollution in outdoor air it is important to make such measurements as well. This will be achieved by producing a contour map of the background city wide pollution levels as well as by monitoring at places we inhabit (e.g. domestic indoor) or visit (e.g. shops). The contour map will represent the well-mixed ambient air to which legislative limits apply whereas the other monitoring will take place across a wide range of locations directly associated with pollution emission sources.

Comparison of data from the two avenues of research will help define if personal exposure is significantly different from environmental data, in particular that used to define compliance with air quality directives. To enable this comparison each volunteer will complete a Micro Environment Activity Diary. This diary indicates both the locations that a persons visits during their working day but also transport modes used to get to and from work.

Project Objectives:

The project is designed to meet a number of objectives.

The creation of a contour map across the selected city should help identify sectors of the city that are the most polluted and may help with improving the design of current or future monitoring networks. Contour maps were applied successfully within the MACBETH and RESOLUTION projects funded by the European Commission. This type of data is also useful for urban dispersion modelling and city planning strategies.

The study measures benzene levels across a wide range of situations; for monitoring personal exposure the project assesses commuters exposed to transport emissions as well as those that stay at home unaffected directly by traffic; for monitoring of environments the project assesses busy road junctions as well as quiet parks. While monitoring this range of personal exposure, including smokers, and environments, including bars and schools, better knowledge of the impact of outdoor and indoor emission sources on human exposure to benzene levels will be gained.

This data from the project will support the risk assessment of air pollution for urban populations in Europe. The data will also be used to help validate population exposure models. This will be achieved by assessing both individual behaviour on the sampling day and also by extrapolation of the data from the volunteers to the sample of people that responded to the screening questionnaire to the city population itself. In turn this assessment will aid the continuing drive to effectively protect citizens from harmful air pollution levels. The health impacts of air pollution continue to be of importance for policy decisions.

The project provides valuable information for the levels of pollution exposure. This is the type of data is an important for scientists who assess the health impact of air pollution. European scientists are currently setting-up a European Information System on Air Pollution and Health (APHEIS) while a review of the health effects of air pollutants for the definition of air quality standards (AIRNET) is also undertaken. While citizens are more aware today than in the past with respect to environmental issues it is of continuing importance to continue the process of education. This project aims at a high level of inclusion for citizens. Both in terms of actually taking part on the project as volunteers but also by the media reporting the results in a fashion that is most accessible. Citizens from a given city are much more likely to pay attention if the data reported is from their streets. When their exposure is linked to the how they or others interact with their environment then an important link can be established. Raising the awareness of citizens with regard to air quality in general, and in particular to the impact of personal behaviour (mode of living, mode of transport, smoking habit) is a high priority for this project.

Since different cities will be assessed an indicative comparative assessment of the air pollution by benzene in various European capitals will be made as more data is collected. Differences may be caused as a function of local conditions (e.g. climatic and meteorological conditions), emission sources, population behaviour or by air quality management policies. In this frame assessment of the impact of air quality policies (air quality and emission directives), local abatement measures and personal behaviour on exposure levels to benzene may be possible.

Fabio Fabbi | EU Commission
Further information:
http://www.jrc.cec.eu.int/more_information/download/people_project_press_pack.htm

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>