Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biodegradable reinforced plastics could replace landfills with compost heaps, Cornell fiber scientist believes

10.09.2002


Instead of landfills clogged with computer and car parts, packaging and a myriad of other plastic parts, a Cornell University fiber scientist has a better idea. In coming years, he says, many of these discarded items will be composted.



The key to this "green" solution, says researcher Anil Netravali, is fully biodegradable composites made from soybean protein and other biodegradable plastics and plant-based fibers, developed at Cornell and elsewhere.

"These new fully biodegradable, environment-friendly green composites have good properties and could replace plastic parts in the interiors of cars and trains, in computers and in packaging materials and other consumer products," says Netravali, a professor of fiber science in the College of Human Ecology at Cornell. "They also provide excellent insulation against heat and noise for use in applications such as cars. Although the plant-based fibers may not be as strong as graphite and Kevlar®, for example, they are low in cost, biodegradable and replenishable on a yearly basis," he says.


Netravali’s findings are published in the September issue of the Journal of Materials Science .

He presented his research on green composites made from ramie fibers (which have a feel similar to silk) at the International Conference on Composites Engineering in Denver two years ago and in San Diego this summer. Ramie fibers are obtained from the stem of an Asian perennial shrub and the resin made from a soy protein isolate-polymer. He did this work in collaboration with Preeti Lodha, a graduate student who received her master’s degree from Cornell in 2000, and Sunghyun Nam, who completed her master’s in fiber science earlier this year.

Instead of nondegradable plastics based on petroleum products, green composites (also known as reinforced plastics) use natural fibers that, for strength, are embedded in a matrix made of a plant-based or other resin. Netravali points out that composites technology is not new -- he cites primitive bricks and walls made of straw mixed with mud as examples.

Netravali notes that most nondegradable plastic composites, made from petroleum-based or synthetic polyurethane, polyethylene and polypropylene, end up in landfills. Not much can be reused or recycled. Plant-based green composites, however, could, he says, become inexpensive alternatives for many mass-produced items. "They will be made from yearly renewable agricultural sources and would be environmentally friendly because they would naturally biodegrade once they were thrown on a compost pile."

Netravali’s research group is working with a number of fibers, including those obtained from kenaf stems, pineapple and henequen leaves and banana stems. The resin materials he is researching include commercial resins, such as polyvinyl alcohol and polylactones, and those derived from microorganisms. He currently is manipulating the composites to improve their mechanical properties, such as stiffness and strength, and to decrease their water absorption, which could start premature degradation.

The new composites could also substitute for wood in such applications as crates or building studs. "Trees take 25 years to grow; fibers we use, however, come from plants that grow to maturity in a year," Netravali points out.

Netravali agrees that green composites are likely to be more expensive than nonbiodegradable plastics, but as they gain acceptance and the volume increases, they will become less expensive, he says. For example, graphite fibers, commonly used as a reinforcement in space applications, cost over $180 a pound when first developed. Today they are less than $10 a pound.

Susan S. Lang | EurekAlert!
Further information:
http://www.news.cornell.edu/releases/Sept02/green.plastics.ssl.html

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>