Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extinction rates of plants are higher than previously thought

27.08.2002


Extinction rates of native California plants have been studied by three researchers who found that previously designed mathematical and computer models were biased because they left out the human element in their predictions, according to an article published in the August 20 Proceedings of the National Academy of Sciences. They conclude with the key concern that "understanding the relationship between habitat loss and loss of biodiversity is central to the development of sound conservation policy."



The authors are: Eric Seabloom, a postdoctoral fellow at UC Santa Barbara’s National Center for Ecological Analysis and Synthesis (NCEAS); Andy Dobson, professor in the Department of Ecology at Princeton; and David M. Stoms, researcher at the Institute for Computational Earth System UC Santa Barbara. The researchers used a public data set that lists the native plant species in 93 regions of California.

These data are particularly interesting, because of the high plant diversity in California. According to the article, California contains more than 20 percent of all the vascular plant species in the U.S. and 4 percent of the worldwide total. Mathematical and computer models are important tools to study potential extinctions and find ways – such as reserves – to preserve biodiversity. Typically, these assume that development in California is random.


"The random model of species loss is overly optimistic," explained Seabloom. "It doesn’t take into account the fact that urban and agricultural development are concentrated in specific types of areas and can wipe out whole species. When there is contiguous human development of the land, the likelihood of losing whole species is greater."

Water is one magnet for development by humans. The article states that "humans have clear habitat preference for coastal or other low-lying lands with adequate supplies of water." It goes on to say that the rate of habitat conversion (the most important cause of extinction) is significantly faster in these areas than in areas less suitable for agriculture."

The authors point out that in spite of attempts to conserve global biological diversity, habitat conversion rates are accelerating, particularly in tropical countries. They caution that policies for the preservation of global biodiversity must be based on accurate predictions of "the effects of habitat conversion on species distributions."

They conclude with the concern that, "The biggest challenge now facing conservation biology is to conserve the 90 percent of biodiversity now residing on low-lying lands that are often privately owned. It is here that rates of habitat loss are increasing most rapidly."

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Innovative grilling technique improves air quality
01.07.2020 | Fraunhofer Institute for Building Physics IBP

nachricht Traffic density, wind and air stratification influence the load of the air pollutant nitrogen dioxide
26.06.2020 | Leibniz-Institut für Troposphärenforschung e. V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>