Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modelling To Develop European Sand Dredging Guidelines

07.08.2002


Computer predictions of the effects of commercial sea-sand dredging on coastal erosion, produced by an international team headed by Dr Alan Davies of the University of Wales, Bangor`s School of Ocean Sciences, will play a key role in developing new European Guidelines for siting commercial sand dredging activities.



Increased demand for North Sea sand is anticipated, both for use as beach and sand dune nourishment and to meet demand for sand from large-scale European construction projects. Sand extraction can exacerbate coastal erosion if dredging activities are not properly sited.

Now, coastal oceanographers and engineers from 17 European leading institutes in & European countries have embarked on a major three year EU funded project, ‘SandPit` to assess what effects sand dredging may have on the sea bed ecosystems and surrounding coastlines and to develop European guidelines for sand dredging based on the optimum size, sea depth and distance from shore of any large scale commercial sand mining operation.


The SandPit project will assess the recovery time scales for the ecosystem surrounding dredging activities, and will gauge the critical depth at which sand mining has no measurable effect on the shoreline. This will be done by dredging a full-size in the North Sea. The pit will be closely monitored to measure what happens in the immediate vicinity once the sand is extracted, to see how the ecosystem recovers and to measure any changes to the adjacent coastline. These measurements will be compared to the predications currently available, and existing computer models will be improved as necessary.

Dr Alan Davies of the School of Ocean Sciences, a coastal oceanographer with more than 20 years` experience in the physical processes of sand movement, will lead the modelling group in SandPit. The group will produce computer predictions of how waves and currents along the shoreline in any one set of circumstances might be affected by dredging and how these changes will, in turn, affect the shoreline. Model improvements will be made using field data obtained during the project, starting with experiments in the North Sea this autumn.

"Sand is transported in the water column, but the amount transported depends on variables such as the particle size of the sand, on the depth at which the dredging takes place, on currents, and in shallower waters, on wave patterns. Dredging itself, by changing the shape of the sea bed, can affect the wave size and this can have consequent effects, including coastal erosion in some situations," explains Davies.

Current government guidelines regarding the volume and siting of dredging activities varies from country to country and are often based on information extrapolated from small-scale models. The aim of SandPit is to help towards putting future guidelines on a stronger scientific base.

Dr Alan Davies | alfa
Further information:
http://sandpit.wldelft.nl/mainpage/mainpage.htm

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>