Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medicated ecosystems: human drugs alter key aquatic organism

07.08.2002


The overuse of antibiotics not only leads to more resistant strains of infection, but, according to new research from the University of Wisconsin-Madison, antibiotics also may be adversely affecting zooplankton, tiny organisms that underpin the health of all freshwater ecosystems.



In the last decade, European and American researchers have found more evidence that lakes and streams are tainted by common drugs, ranging from caffeine to anticancer agents.

This pollution, says Colleen Flaherty, a UW-Madison zoologist, has direct ties to humans, either through the improper disposal of unwanted pharmaceuticals or through the ingestion of the drugs.


"Up to 80 percent of drugs taken by humans and domesticated animals can be excreted in their biologically active form," explains Flaherty. This means that the antibiotics, antidepressants and anti-inflammatory pills we either take or throw out can eventually end up polluting the environment and harming the organisms that live in it.

Says UW-Madison zoologist Stanley Dodson, who studies freshwater ecology, "Pharmaceuticals can be detected in many surface water streams and lakes, yet we know little about how these strongly biologically active chemicals affect the ecology of aquatic organisms."

Flaherty will present findings from her study -- one of the first to document the effects of commonly-prescribed drugs on Daphnia, a zooplankton integral to freshwater ecosystems -- Thursday, Aug. 7, at the annual meeting of the Ecological Society of America.

"Daphnia play a key ecological role in freshwater sources," says Flaherty. "They are an intermediate organism in these ecosystems -- they eat the algae and are eaten by the fish. If something happens to Daphnia, it could affect both the algae and the fish populations."

To determine the influence of pharmaceuticals on this key freshwater species, Flaherty tested Daphnia’s biological response to commonly prescribed drugs that have been found in European and U.S. waters; the drugs include a cholesterol-lowering one (clofibric acid), an antidepressant (fluoxetine) and five antibiotics.

Flaherty performed short- and long-term studies to find out what happens to a female Daphnia and her offspring when exposed to a particular drug. Flaherty measured the survival, growth, number and sex of each female’s offspring. While the short-term studies looked at a single brood, the long-term ones examined all the offspring the female produced during her life span (about 30 days).

The effects Flaherty found varied. In the short-term studies, the antibiotics and cholesterol drug at concentrations of just 10 parts per billion -- an environmentally relevant concentration, says Flaherty -- appear to stunt growth and result in more male offspring.

In the long-term studies, these differences were diminished: offspring exposed to the antibiotics tended to have longer lifespans; those exposed to the cholesterol-lowering drug showed no apparent effects. While the other drug, an antidepressant, produced no differences in the shorter trials, it did result in a greater number of offspring in the longer studies.

"When Daphnia were exposed to a single pharmaceutical throughout their entire lifespan, as in the long-term studies, they seemed to become acclimated to the polluted environment," Flaherty says.

But, as Flaherty points out, Daphnia swim in waters tainted with not just one drug, but many: "Some of these drugs may not have significant effects by themselves," she says, "but, when you combine them in a ’pharmaceutical cocktail,’ the effects can be lethal."

When Flaherty exposed the organisms to a combination of the cholesterol drug and the antidepressant during the short-term studies, she found that the offspring were more likely to be female, have more deformities that hinder swimming and up to a 90 percent mortality rate. Flaherty says, "I never expected that two drugs that had virtually no individual effects could be so lethal when combined."

Because of these findings, Flaherty says that, in order to fully understand the ecological effects of pharmaceuticals or other man-made chemicals on freshwater ecosystems, scientists should look at not just one chemical, but combinations of them.

Emily Carlson (608) 262-9772, emilycarlson@facstaff.wisc.edu


Colleen Flaherty | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Emissions from road construction could be halved using today’s technology
18.05.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht When every particle counts: IOW develops comprehensive guidelines for microplastic extraction from environmental samples
11.05.2020 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>