Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“We place mussels in the ports we wish to analyse in order to determine how much contamination is accumulated and what type.”

30.07.2008
The research Project led by Dr. Nestor Etxebarria of the University of the Basque Country is aimed at monitoring contamination of ports. Mussels are used to measure the levels of contaminants as they feed by filtering water and so accumulate any contaminant substances in their organs.

Studying living things can prove to be highly significant when evaluating contamination suffered by a specific environment. A research team from the University of the Basque Country (UPV/EHU), with Dr. Nestor Etxebarria as director, is involved in this monitoring of contaminants.

As Dr. Etxebarria explains, “it is known that ports are contaminated; what we are investigating is to what extent the contaminants therein reach aquatic organisms”. The project, Comprehensive evaluation of contamination in sediments at ports along the northern Spanish coast, using chemical, biochemical and ecotoxicological tools, is within the remit of the lines of research by the Analytical Research and Innovation (IBEA) research team led by Professor Juan Manuel Madariaga, and aided by doctors Alberto de Diego, Gorka Arana, Aresatz Usobiaga and Olatz Zuloaga.

Biomonitoring of metals and organic substances

Chemists at UPV/EHU, working together with a team of marine biologists from the University of Vigo and a similar team from AZTI-Tecnalia, have been analysing the harbours at this Galician city, as well as those in Bilbao and the port of Pasajes: their waters, the sediments and living creatures therein. They measure the concentration of contaminants and analyse the biological consequences that these cause in the aquatic organisms, using biomonitoring.

“We take mussels from clean waters and place them at points we wish to analyse in order to see how much and what kind of contamination is accumulated”, stated Dr Etxebarria. “The Galician biologists are in charge of studying the consequences of the contaminants on the mussels; we measure the concentration of the contaminants received by the mussels”, he added.

The object of the research is to answer questions such as: where is each kind of contamination located? What is the chemical origin of each? Of all the contaminants, the UPV/EHU team have only managed to analyse a few, amongst which is tributyltin (TBT) metal, used in the past for painting the hulls of vessels. “Today TBT is banned but it is highly durable and it can still be found in waters”, stated Dr Etxebarria. Organic substances have also been studied, such as polyaromatic carbohydrates (PAH) from ships fuel, the phtalates used in making plastics or the polychloride biphenyls (PCBs) derived from oils. “These last are similar to dioxines and in the past were used in very powerful transformers. They are also prohibited, but are still present in the water”, said Dr. Etxebarria.

Biological and chemical sampling

Each year Vigo, Bilbao and Pasajes are visited and simples are taken over two or three days. Five or six zones at each port are analysed, one of which is believed to be clean, i.e. as a control, and the other four or five contaminated. “We place 20 or 30 mussels mounted on plastic supports and inside gauzes, and submerge them at a depth of two metres”, explained Dr. Etxebarria, “after a certain period, we collect them for analysis of level and type of contamination accumulated”.

But using living beings to measure contamination also has its risks. “In some cases the contamination is high and the mussels can die”, states Dr Etxebarria. This is why the UPV/EHU team has created a new method for monitoring contaminants: “by using polymeric mountings, we simulate chemically what the mussels do, i.e. accumulate contaminants”. Moreover, in this way, it is possible to systemise the sampling.

Evaluation of the tools

The research led by Nestor Etxebarria is to finish in 2009, but they already have some provisional results. “The situation in the port of Bilbao is quite homogenous; we have taken samples in the areas of Getxo, Santurce and the exterior port (Bilbao, in the Basque Country) and the results are similar in each case. On the other hand, in Vigo (Galicia) we detected wide differences from one zone to another, for example between water near a shipyard and the open sea”, Dr Etxebarria said.

Apart from carrying out a diagnosis of port waters, another aim of the project is to evaluate the methodology and tools of the sampling. The European Directive on water obliges government bodies to monitor contaminants in all canals and along all coasts. “We wish to know if our methodology and the sampling tools that we have developed are useful for this purpose”, said Dr Etxebarria. “On the one hand, we have seen that zones supposedly clean are not as clean as we thought; it is necessary to redefine the selection of these clean zones. On the other, we are also perfecting the tool that chemically simulates the role of the mussels, in order to carry out even more precise sampling”, he concluded.

Garazi Andonegi | alfa
Further information:
http://elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1836&hizk=I

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>