Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process used by microges to make greenhouse gases uncovered

09.07.2008
Researchers here now have a picture of a key molecule that lets microbes produce carbon dioxide and methane – the two greenhouse gases associated with global warming.
The findings relate to organisms called methanogens and are explained in the latest issue of the journal Proceedings of the National Academy of Sciences.

The publication capped a 12-year effort and can offer some insights into how industrial processes might be improved, explained Michael Chan, professor of biochemistry, and Joseph Krzycki, professor of microbiology, both of Ohio State University.

“This enzyme is the key to the whole process of methanogenesis from acetic acid,” Krzycki said. “Without it, this form of methanogenesis wouldn’t happen. Since it is so environmentally important worldwide, the impact of understanding this would be enormous.”

Methanogenesis is the process by which the gas methane is made, and it takes place everywhere across the globe, from swamps to landfills, releasing the gas that ultimately seeps into the atmosphere.

One central player in this process is the microbe called Methanosarcina barkeri, a member of an unusual group of organisms called the Archaea that is similar to both bacterial and animal cells. This organism possesses large amounts of the enzyme so important for making methane.

“We often think only of humans putting carbon dioxide and methane into the atmosphere but natural biology itself actually provides its own sizeable share,” said Chan. “This enzyme plays an important role in the process that converts acetate into these two gases.”

The research can be traced to work that Krzycki did as a graduate student in the mid-1980s studying the protein known as acetyl-CoA decarbonylase/synthase (ACDS). He was focusing on whether carbon monoxide oxidation was part of the process of methanogenesis from acetate, which had not been suspected before.

In 1995, Chan approached Krzycki about working with this protein as one of the first projects Chan took on after coming to Ohio State. The goal was to use protein crystallography to get a picture of it and figure out how it works.

An important initial step in this kind of research is to “grow” crystals of the protein molecules, and from these crystals, scientists can actually map out the protein’s structure.

“We tried for six months when I first arrived at Ohio State but at the end of that period, we couldn’t get any crystals to grow,” Chan said.

Two years later, Chan and a former graduate student, Bing Hao, went back to look at those previous crystallization experiments and discovered that crystals had eventually grown.

“The identification of these crystals allowed us to solve the structure of the protein making up the crystals, although it took 10 more years to do that,” he said. “From the structure, we got a beautiful picture of the protein that we could use to understand how it works. Viewing a structure is somewhat like looking at the schematics of an engine.”

Krzycki said that processes similar to those performed by this protein are currently being used in industry, although in those cases, high temperatures are required.

“From studying this process in these microbes, hopefully scientists can understand how their natural catalysts make this reaction work at lower temperatures,” he said.

Along with Chan, Krzycki and Hao, Weimin Gong, Zhiyi Wei, Donald Ferguson Jr. and Thomas Tallant also worked on the project. The research was supported by grants from both the National Institutes of Health and the Department of Energy.

Michael Chan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>