Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Process used by microges to make greenhouse gases uncovered

09.07.2008
Researchers here now have a picture of a key molecule that lets microbes produce carbon dioxide and methane – the two greenhouse gases associated with global warming.
The findings relate to organisms called methanogens and are explained in the latest issue of the journal Proceedings of the National Academy of Sciences.

The publication capped a 12-year effort and can offer some insights into how industrial processes might be improved, explained Michael Chan, professor of biochemistry, and Joseph Krzycki, professor of microbiology, both of Ohio State University.

“This enzyme is the key to the whole process of methanogenesis from acetic acid,” Krzycki said. “Without it, this form of methanogenesis wouldn’t happen. Since it is so environmentally important worldwide, the impact of understanding this would be enormous.”

Methanogenesis is the process by which the gas methane is made, and it takes place everywhere across the globe, from swamps to landfills, releasing the gas that ultimately seeps into the atmosphere.

One central player in this process is the microbe called Methanosarcina barkeri, a member of an unusual group of organisms called the Archaea that is similar to both bacterial and animal cells. This organism possesses large amounts of the enzyme so important for making methane.

“We often think only of humans putting carbon dioxide and methane into the atmosphere but natural biology itself actually provides its own sizeable share,” said Chan. “This enzyme plays an important role in the process that converts acetate into these two gases.”

The research can be traced to work that Krzycki did as a graduate student in the mid-1980s studying the protein known as acetyl-CoA decarbonylase/synthase (ACDS). He was focusing on whether carbon monoxide oxidation was part of the process of methanogenesis from acetate, which had not been suspected before.

In 1995, Chan approached Krzycki about working with this protein as one of the first projects Chan took on after coming to Ohio State. The goal was to use protein crystallography to get a picture of it and figure out how it works.

An important initial step in this kind of research is to “grow” crystals of the protein molecules, and from these crystals, scientists can actually map out the protein’s structure.

“We tried for six months when I first arrived at Ohio State but at the end of that period, we couldn’t get any crystals to grow,” Chan said.

Two years later, Chan and a former graduate student, Bing Hao, went back to look at those previous crystallization experiments and discovered that crystals had eventually grown.

“The identification of these crystals allowed us to solve the structure of the protein making up the crystals, although it took 10 more years to do that,” he said. “From the structure, we got a beautiful picture of the protein that we could use to understand how it works. Viewing a structure is somewhat like looking at the schematics of an engine.”

Krzycki said that processes similar to those performed by this protein are currently being used in industry, although in those cases, high temperatures are required.

“From studying this process in these microbes, hopefully scientists can understand how their natural catalysts make this reaction work at lower temperatures,” he said.

Along with Chan, Krzycki and Hao, Weimin Gong, Zhiyi Wei, Donald Ferguson Jr. and Thomas Tallant also worked on the project. The research was supported by grants from both the National Institutes of Health and the Department of Energy.

Michael Chan | EurekAlert!
Further information:
http://www.osu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Treatment of saline wastewater during algae utilization
14.05.2019 | Jacobs University Bremen gGmbH

nachricht Plastic gets a do-over: Breakthrough discovery recycles plastic from the inside out
07.05.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>