Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air monitoring helps anticipate possible ecosystem changes

27.06.2008
When rain settles the atmosphere and brings air pollutants to the ground, it can have a lasting effect on ecosystems, sometimes hundreds of miles away, according to a Texas AgriLife Research agricultural engineer.

Dr. Brent Auvermann, research engineer and Texas AgriLife Extension Service specialist in Amarillo, is working with the U.S. Department of Agriculture, the Environmental Protection Agency and other agencies to see what is settling from the skies above the Panhandle.

"The question we're trying to help answer is, are we altering ecosystems by dumping pollutants into the atmosphere that will come out in the form of wet or dry deposition?" Auvermann said.

"We have intensive agriculture of all forms and we'd like to know if the specific dominant land uses are contributing nutrients to ecosystems," he said.

Auvermann explained that all ecosystems receive some atmospheric inputs, such as nitrogen, phosphorus and sulfur. The plant and animal life dominant to that region thrives because it has adapted to a particular rate of those nutrients.

When the nutrient load changes, it can change the competitive ability of a species and allow different ones to thrive where they once were not competitive, he said. The effects extend from major animal life such as deer down to the smallest bacteria.

For instance, scientists know that the Rocky Mountain National Park has been home to wildflowers for many years, Auvermann said. But evidence from the last 20 years suggests that the ecosystem seems to be changing. The wildflowers are gradually being replaced by grasses and sedges.

"I don't know anyone who drives all the way to Estes Park to take pictures of sedges," he said.

Another change the Colorado scientists are noticing is acidification of the normally alkaline soils on the eastern side of the Continental Divide, Auvermann said. This can lead to changes in the surface water and streams.

"Scientists believe the emissions from around eastern Colorado and the bordering states have resulted in detectable changes in the high alpine ecosystems," he said.

Auvermann joined a network of scientists monitoring such emissions about a year ago when his research team set up a monitoring site southeast of Canyon with wet and dry deposition measuring equipment. Deposition is the process in which particles or gases in the air settle to the ground, vegetation or water surfaces.

The wet deposition measurements are made as a part of the National Atmospheric Deposition Program, he said. The wet proportion is that which happens as a result of precipitation and its scrubbing effect.

Dry deposition, measured as a part of the Clean Air Status and Trends Network, is all the other particles and gases that happen to settle out of the air, he said.

While they are two separate projects, by measuring both in the same location, Auvermann said scientists can measure the total deposition.

Both sets of equipment are filling a void in the organizations' nationwide networks, he said. The closest wet deposition measurements are being made at Muleshoe and Goodwell, Okla. The nearest dry deposition equipment is even farther away, in Big Bend National Park. The Canonceta site sits about midway between the sites at Muleshoe and Goodwell.

"We're looking for long-term trends and whether they are increasing or decreasing," Auvermann said. "Wet deposition increases in wet years and decreases during a drought, so we have to take a longer-term view."

The site located along the rim of Ceta Canyon is free from influence of any single source of air pollution, he said. The wet measurements can include ammonia, nitrate, calcium, sodium, potassium, phosphorus, sulfur and the acidity of rain or snow.

The major nutrients of concern are nitrogen and sulfur, Auvermann said. Based on the first year of monitoring data, the total deposition of inorganic nitrogen – ammonia plus nitrate – is between 3.5 or 4.5 pounds of nitrogen per acre per year.

"Compared to how much nitrogen we put on irrigated grain crops, it's not much, obviously," he said. "But on nutrient-poor rangeland, who knows?

"We don't know what an undisturbed background level would be in this region of the state," Auvermann said. "We can't really say without more information if a certain amount of deposition is good or bad. Right now we are getting the baseline and looking at how it relates to the surrounding sites that have been monitoring deposition for a lot longer than we have."

Auvermann is especially excited about using the Canonceta site as a living laboratory for science students from middle school to college.

"This kind of environmental monitoring is where it all comes together: meteorology, chemistry, physics, biology and ecology," he said. "It's all here."

Dr. Brent Auvermann | EurekAlert!
Further information:
http://www.ag.tamu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Finding plastic litter from afar
19.11.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Despite government claims, orangutan populations have not increased. Call for better monitoring
06.11.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Controlling organ growth with light

19.11.2018 | Life Sciences

New way to look at cell membranes could change the way we study disease

19.11.2018 | Life Sciences

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>