Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microwaving Waste Goodbye

18.06.2008
Malaysia produce 70 million tons of organic wastes annually. Most of these are either incinerated or dumped in landfill and both of which have serious impact on the environment. A research is conducted at Universiti Malaysia Sarawak to reutilise the wastes and explore their potential as energy sources.

In Malaysia, approximately 70 million tones of organic wastes are generated annually as municipal solid wastes, agricultural residues, animal wastes, sewage sludge from wastewater treatment plant and wood chips.

Most of these wastes are either incinerated or dumped in landfill. The latter requires precious open lands, while the former contributes to serious atmospheric pollution. Both of which have serious impact on the environment. The country, therefore, needs to adopt a more practical, economic and acceptable approach in managing and disposing the organic wastes.

The thing about organic wastes is that they harbour abundance volatile matter which can be converted to fuel through suitable treatment, such as pyrolysis. This possible method is receiving increasing attention as an economic and environmentally acceptable route to waste disposal due to its ability to produce fuel gases and oil.

The latest development in the pyrolysis technology is the application of heat by using microwave energy. Microwave treatment might serve as an alternative method for drying, pyrolysing and gasifying the organic wastes in one single step. The research in this method, however, has not been extensive. Published information on microwave pyrolysis design and process condition is also lacking.

A research group at the Department of Chemistry, University Malaysia Sarawak, has designed a laboratory scale microwave pyrolysis system through modification of laboratory microwave oven. The aim is to conduct chemical characterisation of the waste samples and their microwave pyrolysis products, and to optimise the microwave pyrolysis processes for optimum biofuel yield which is environmentally acceptable. The main focus is to develop an efficient, simple and low-temperature based process for converting organic wastes into useful renewable energy sources.

Preliminary studies on low-temperature microwave pyrolysis of sewage sludge suggest a fuel material potential, comparable to the lower grade coal.It is hoped that data gathered in this study will provide useful information on the microwave pyrolysis of organic wastes and the potential use of the process as an alternative for the reutilisation of wastes, which at the same time produce renewable energy sources for industries in Malaysia.

ABOUT UNIVERSITI MALAYSIA SARAWAK (UNIMAS)

UNIMAS was established in 1992. The University's mission is to generate, disseminate and apply knowledge strategically and innovatively to enhance the quality of the nation’s culture and prosperity of its people. The knowledge creation initiatives at UNIMAS are premised partly upon the wealth of natural resources and diverse socio-cultural make up of the State of Sarawak. UNIMAS commitment to research has already been recognized by the stakeholders and partners in industry through provision of endowments for the establishment of eight research chairs; these include the Tun Zaidi Chair for Medicinal Chemistry, the Tun Openg Chair for Sago Technology, the Shell Chair for Environmental Studies, and the Sapura Chair for ICT.

Resni Mona | ResearchSEA
Further information:
http://www.unimas.my
http://www.researchsea.com

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>