Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean bacteria absorb carbon dioxide

10.06.2008
Marine bacteria have the capacity to take up and capture carbon dioxide with the help of sunlight. This has been discovered by researchers at Kalmar University in Sweden in collaboration with colleagues in Spain, Australia, and Russia. The finding is being published in the internationally respected scientific journal PNAS.

This can be compared to a simple form of photosynthesis, where marine bacteria use energy from sunlight to absorb carbon dioxide. It was previously known that bacteria in oxygen-starved lakes can have this capacity, but it's new knowledge that bacteria in the open seas can do so as well.

This challenges earlier knowledge that algae are the only organisms that capture carbon dioxide in the surface water exposed to sunlight. It remains unknown just how much carbon dioxide is captured by these bacteria.

"Even if it turns out that only a tiny fraction of carbon dioxide is captured by the bacteria, this can have an enormous impact, since more than 100 million tons of carbon dioxide is captured daily by algae through photosynthesis in the oceans. Bacteria may prove to take up millions of tons. We need to study this more," says Jarone Pinhassi, associate professor of marine microbiology at Kalmar University and one of the researchers behind the discovery.

Recently Jarone Pinhassi and his colleagues discovered that marine bacteria use sunlight as a source of energy, owing to a unique light-capturing pigment, proteorhodopsin, which is found in nearly half of sea bacteria. Oceans cover about 70 percent of the earth's surface, and there is a constant exchange of carbon dioxide between the atmosphere and the sea. Knowledge of marine bacteria may come to be of major importance to our understanding of what the climate impact of rising carbon dioxide emissions means for the oceans.

"How many bacteria in the oceans have the ability to take up carbon dioxide and how much carbon dioxide they capture are exciting questions for the future. Many scientists are going to want to research this," Jarone Pinhassi believes.

Jarone Pinhassi and doctoral candidate Laura Gómez-Consarnau at Kalmar University are the Swedish researchers who worked with the current study. Read the entire article, published this week on the home page for Proceedings of the National Academy of Science, USA: www.pnas.org

Contact: Jarone Pinhassi
Phone: +46 480 44 62 12
Cellphone: +46 702 75 63 18
E-mail: jarone.pinhassi@hik.se

Anna Strömblad | idw
Further information:
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Machine learning helps predict worldwide plant-conservation priorities
04.12.2018 | Ohio State University

nachricht From the Arctic to the tropics: researchers present a unique database on Earth’s vegetation
20.11.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>