Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weather, stomach bugs and climate change: Refining the model

06.06.2008
Monitoring extreme weather, such as periods of high temperature, is one way to predict the timing and intensity of infectious diseases like cryptosporidiosis, an intestinal disease that causes upset stomach and diarrhea.

Two public health researchers have created a model that takes into account weather and other factors that affect the number of people who will fall ill during an outbreak. With this model they show that the risk of weather-sensitive diseases may increase with climate variability or even gradual climate change. Better understanding of the ways in which climate can affect disease will help researchers forecast infectious disease outbreaks and design early warning systems.

In a paper published in Environmetrics, first author Elena Naumova, PhD, associate professor in the Department of Public Health and Family Medicine at Tufts University School of Medicine in Boston and co-author Ian MacNeill, PhD, professor emeritus, in the Department of Statistics & Actuarial Sciences at the University of Western Ontario, introduce a model that takes into consideration the lag time between exposure and infection. The authors then demonstrate this model by analyzing the association between high temperature and daily incidence of cryptosporidiosis in Massachusetts from 1996-2001.

In this new model, Naumova and MacNeill consider several factors: outdoor temperature, base level of a disease in a community before an outbreak, the number of people infected throughout the course of the outbreak, and incubation time of a given disease. "It is this last factor that affects what we call the lag time," says Naumova, "infected individuals go on to infect others, and current models may be underestimating the number of cases in an outbreak by failing to account for lag time."

"To consider such time-distributed lags is a challenging task given that the length of a latent period varies from hours to months and depends on the type of pathogen, individual susceptibility to the pathogen, dose of exposure, route of transmission and many other factors," write the authors. "Using data from the Massachusetts Department of Public Health, we demonstrated that the number of cases of cryptosporidiosis increased and can be sustained over the 21 days following a temperature spike exceeding 90 degrees Fahrenheit. This model is able to provide an accurate estimate of cases of cryptosporidiosis that can be attributed to both lag time and the weather," says Naumova.

"We hope that this model can be expanded upon by public health researchers to gain insight into how disease is spread, and what populations are most susceptible. Our goal is to tailor this model for specific climate regions, infections and at-risk subpopulations, and look for patterns between outbreaks. Continually refining our models will enable us to assess the effects of climate change on human health and make better projections about future infectious disease outbreaks," says Naumova.

This work builds on Naumova's previous research developing mathematical models to predict, more accurately, the timing, severity and impact of diseases. Naumova, a biostatistician, is the director of the Tufts Initiative for the Forecasting and Modeling of Infectious Diseases (Tufts InForMID). This group aims to improve biomedical research by developing innovative computational tools in order to assist life science researchers, public health professionals, and policy makers. Her research focus is developing tools for time series and longitudinal data to study disease surveillance, exposure assessment, and studies of growth.

Siobhan Gallagher | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Ecology, The Environment and Conservation:

nachricht Surface clean-up technology won't solve ocean plastic problem
04.08.2020 | University of Exeter

nachricht Improving the monitoring of ship emissions
03.08.2020 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>