Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What makes life go at the tropics?

29.05.2008
PNAS study points to heat, not light, as engine driving biodiversity
What causes tropical life to thrive: temperature, or sunlight?

The answer is not necessarily “both.” According to a study published online this week in PNAS Early Edition, the explosion of species at the tropics has much more to do with warmth than with light.

“The diversity was unrelated to productivity (from photosynthesis), but it was strongly related to temperature,” said University of Southern California biologist Jed Fuhrman, who led a group that analyzed bacterial samples from warm and cold oceans.

Fuhrman’s group found far greater diversity in samples taken near the equator. In particular, samples from low-productivity waters still contained many bacterial species, suggesting that photosynthesis has little influence on diversity.

Many researchers have tried to separate the influence of temperature and sunlight, Fuhrman said, but have found it hard to do by studying higher organisms.

Bacteria are ideal subjects because of their wide distribution and the recent availability of genetic fingerprinting, he added.

The question of what drives diversity is important to biologists who seek to uncover the basic rules governing life.

“Is diversity ruled by fundamental laws, and if so, what is the basis of them?” Fuhrman asked.

The so-called kinetic law links the rates of metabolism, reproduction and many other biological processes to the motion of atoms and molecules. Such motion increases with temperature, presumably speeding up the biological processes.

Fuhrman calls this “the Red Queen runs faster when she is hot” hypothesis.

Productivity also is thought to promote diversity by increasing the food supply. This is “the larger pie can be divided into more pieces” hypothesis.

The two hypotheses may both be valid, Fuhrman said, but his group’s results show that “the kinetics of metabolism, setting the pace for life, has strong influence on diversity.”

Biologists have known for centuries that animal and plant biodiversity is greatest at the tropics, though they have not agreed on whether temperature or productivity was the cause.

The Fuhrman group is the first to show that bacteria follow the same pattern. And as the PNAS study shows, bacteria are useful vehicles for probing the causes of biodiversity.

Fuhrman, holder of the McCulloch-Crosby Chair for Marine Biology in the USC College of Letters, Arts and Sciences, has been studying bacteria since the early 1980s, when new instruments and techniques greatly improved scientists’ ability to identify microbial species.

Since then, marine biologists have realized that bacteria play a dominant role in the oceans. More than half the carbon dioxide respired by marine organisms comes from bacteria, Fuhrman said. Bacteria also comprise most of the diversity on earth, control vital biogeochemical cycles, and form an integral part of the food chain.

“I study them because, even though they’re invisible, they’re incredibly important,” Fuhrman said.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>