Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human vision inadequate for research on bird vision

13.05.2008
The most attractive male birds attract more females and as a result are most successful in terms of reproduction. This is the starting point of many studies looking for factors that influence sexual selection in birds.

However, is it reasonable to assume that birds see what we see? In a study published in the latest issue of American Naturalist, Uppsala researchers show that our human vision is not an adequate instrument.

“The results mean that many studies on sexual selection may need to be re-evaluated,” says Anders Odeen, research assistant at the Department of Animal Ecology at Uppsala University, who carried out this study with his colleague Olle Håstad.

The significance of birds’ plumage, both in terms of richness of colour and particular signals, has been shown to be a major factor in birds’ choice of partner. In order to assess the colours of birds, everything from binoculars to RGB image analyses are used. However, most studies are based on the hypothesis that human colour vision can be used to assess what birds see.

“It’s a bit like a colour blind person describing the colours of clothes – it’s often quite accurate but sometimes it can go badly wrong.”

This problem has been discussed in the research arena, but so far no study has been able to show its extent. The Uppsala researchers used a mathematical model to investigate how bird and human retina work. Using the model combined with information on differences in the colour-sensitive cones of the eye, they have been able to figure out how colour contrasts are perceived. Greater colour contrast can be translated as ‘richness of colour’ or more ‘brightly coloured’.

“We show that the colours are perceived differently in over 39 percent of cases, which means that it is possible that more than one third of previous studies have been based on inaccurate information.

The differences were partly due to the fact that human vision cannot perceive UV light, while avian vision can. There are several differences between human and avian perception of colour, which show that certain shades that can be seen clearly by birds are not perceived at all by humans. Through evolution, our colour vision has developed from a more primitive version. This means that we have gone from having two types of colour sensitive cones in our eyes to having three. Birds have four.

“Most other animal species only have two, which means that their colour vision is rudimentary. It is human colour vision that differs from the norm, so in reality it’s ridiculous to use our colour vision to assess the colours of other animals.

The results are not only significant for basic research on sexual selection. They also illustrate the risks of making certain decisions on the basis of human vision, for example, in designing and legislating on lighting systems for domestic fowl.

Anneli Waara | alfa
Further information:
http://www.journals.uchicago.edu/doi/abs/10.1086/587529
http://www.uu.se

More articles from Ecology, The Environment and Conservation:

nachricht Loss of habitat causes double damage to species richness
02.04.2019 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Deep decarbonization of industry is possible with innovations
25.03.2019 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>