Model successfully predicts large river system fish diversity

While scientists have developed methods to predict aspects of fish diversity in specific river locations, a model to understand what factors may drive a comprehensive suite of fish biodiversity patterns in a large and complex system of rivers has been elusive.

Now a group of researchers, including University of Maryland ecologist William Fagan, reports success using a so-called “neutral model” to study fish diversity in the sprawling Mississippi-Missouri River System. Their study appears in the May 8 issue of Nature.

According to Nature, “That a simple model with a minimal set of parameters can capture the observed biodiversity patterns in complex landscapes suggests that effective monitoring of environmental change is possible, and could contribute to resource management and conservation strategies.”

“The neutral model approach means that we do not need to have detailed knowledge about the competitive hierarchy or species interactions within a group of organisms to quantitatively reproduce a wide variety of biodiversity patterns in that system,” said Fagan, co-principal investigator of the study. “This 'pattern oriented modeling,' in which we simultaneously reproduce a wide variety of empirical results using a single model fit, is a powerful approach for analyzing complex systems.”

Controversial Method

Using the neutral model, in which all species are assumed to be functionally equivalent, to predict biodiversity has been controversial in ecology circles.

“Neutrality is a 'hot' topic in ecology, because it flies in the face of decades of detailed studies of how species interact among themselves on local scales,” says Fagan. “The application of the neutral model to a complex, hierarchically structured spatial network like the Mississippi-Missouri River System is new.

“With a neutral model, we can suggest that a coarse assumption of equality is an excellent starting point for large scale investigations when little species-specific information is available.”

M-M River System

The Mississippi-Missouri River System was a good study area, Fagan says, because it is the largest confluent drainage system covered by the NatureServe dataset.

“The fact that we can replicate key aspects of the spatial patterns of fish biodiversity from the Appalachians to the Rockies testifies to the robustness of this approach,” said Fagan.

“One upshot from this work, still to be vetted in other systems, is the idea that some knowledge of the branching geometry of a river network, coupled with average runoff production, can provide crucial insights into the amount and spatial distribution of freshwater biodiversity and how that biodiversity may change as discharge patterns change.”

Media Contact

Ellen Ternes EurekAlert!

More Information:

http://www.umd.edu

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors