Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trouble in Paradise: Warming a Greater Danger to Tropical Species

07.05.2008
Polar bears fighting for survival in the face of a rapid decline of polar ice have made the Arctic a poster child for the negative effects of climate change. But new research shows that species living in the tropics likely face the greatest peril in a warmer world.

A team led by University of Washington scientists has found that while temperature changes will be much more extreme at high latitudes, tropical species have a far greater risk of extinction with warming of just a degree or two. That is because they are used to living within a much smaller temperature range to begin with, and once temperatures get beyond that range many species might not be able to cope.

"There's a strong relationship between your physiology and the climate you live in," said Joshua Tewksbury, a UW assistant professor of biology. "In the tropics many species appear to be living at or near their thermal optimum, a temperature that lets them thrive. But once temperature gets above the thermal optimum, fitness levels most likely decline quickly and there may not be much they can do about it."

Arctic species, by contrast, might experience temperatures ranging from subzero to a comparatively balmy 60 degrees Fahrenheit. They typically live at temperatures well below their thermal limit, and most will continue to do so even with climate change.

"Many tropical species can only tolerate a narrow range of temperatures because the climate they experience is pretty constant throughout the year," said Curtis Deutsch, an assistant professor of atmospheric and oceanic sciences at the University of California, Los Angeles. "Our calculations show that they will be harmed by rising temperatures more than would species in cold climates.

"Unfortunately, the tropics also hold the large majority of species on the planet," he said.

Tewksbury and Deutsch are lead authors of a paper detailing the research, published in the May 6 print edition of the Proceedings of the National Academy of Sciences. The work took place while Deutsch was a UW postdoctoral researcher in oceanography.

The scientists used daily and monthly global temperature records from 1950 through 2000, and added climate model projections from the Intergovernmental Panel on Climate Change for warming in the first years of the 21st century. They compared that information with data describing the relationship between temperatures and fitness for a variety of temperate and tropical insect species, as well as frogs, lizards and turtles. Fitness levels were measured by examining population growth rates in combination with physical performance.

"The direct effects of climate change on the organisms we studied appear to depend a lot more on the organisms' flexibility than on the amount of warming predicted for where they live," Tewksbury said. "The tropical species in our data were mostly thermal specialists, meaning that their current climate is nearly ideal and any temperature increases will spell trouble for them."

As temperatures fluctuate, organisms do what they can to adapt. Polar bears, for example, develop thick coats to protect them during harsh winters. Tropical species might protect themselves by staying out of direct sunlight in the heat of the day, or by burrowing into the soil.

However, since they already live so close to their critical high temperature, just a slight increase in air temperature can make staying out of the sun a futile exercise, and the warming might come too fast for creatures to adapt their physiologies to it, Tewksbury said.

Other authors of the paper are Raymond Huey, Kimberly Sheldon, David Haak and Paul Martin of the University of Washington and Cameron Ghalambor of Colorado State University. The research was funded in part by the National Science Foundation and the UW Program on Climate Change.

The work has indirect implications for agriculture in the tropics, where the bulk of the world's human population lives. The scientists plan further research to examine the effects of climate change, particularly hotter temperatures, on tropical crops and the people who depend on them.

"Our research focused only on the impact of changes in temperature, but warming also will alter rainfall patterns," Deutsch said. "These effects could be more important for many tropical organisms, such as plants, but they are harder to predict because hydrological cycle changes are not as well understood."

For more information, contact Tewksbury at (206) 616-2129, (206) 331-1893 (cell) or tewksjj@u.washington.edu; or Deutsch at (310) 825-0088 or cdeutsch@atmos.ucla.edu.

NOTE: A high-resolution image of a beetle in Ecuador's cloud forest, a species that could be challenged by climate change, is available from Vince Stricherz, vinces@u.washington.edu.

Vince Stricherz | newswise
Further information:
http://www.washington.edu
http://www.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>