Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecologists tease out private lives of plants and their pollinators

06.05.2008
The quality of pollen a plant produces is closely tied to its sexual habits, ecologists have discovered.

As well as helping explain the evolution of such intimate relationships between plants and pollinators, the study – one of the first of its kind and published online in the British Ecological Society's journal Functional Ecology – also helps explain the recent dramatic decline in certain bumblebee species found in the shrinking areas of species-rich chalk grasslands and hay meadows across Northern Europe.

Relationships between plants and pollinators have fascinated ecologists since Darwin's day. While ecologists have long known that pollinators such as honeybees and bumblebees are often faithful to certain flowers, and have done much work on the role of nectar as a food source, very little is known about how pollen quality affects these relationships.

Working on Salisbury Plain, the largest area of unimproved chalk grassland in north west Europe, ecologists from the universities of Plymouth, Stirling and Poitiers in France collected pollen from 23 different flowering plant species, 13 of which are only pollinated by insects while the other 10 species can either pollinate themselves or be insect pollinated. They analysed the pollen for protein content and, in the second part of the study, recorded bumblebee foraging behaviour.

They found that without exception, plants that rely solely on insects for pollination produce the highest quality pollen, packing 65% more protein into their pollen than plant species that do not have to rely on insect pollinators. They also discovered that bumblebees prefer to visit plants with the most protein-rich pollen. According to the lead author of the study, Dr Mick Hanley of the University of Plymouth: “Bumblebees appear to fine-tune their foraging behaviour to select plants offering the most rewarding pollen. Although there is some debate about how they can tell the difference, it is possible they are using volatile compounds.”

By helping understand the advantages and disadvantages of plant-pollinator relationships where particular plants rely on particular insects to reproduce, and those insects rely on the same plants for food, the results could help ecologists conserve certain bumblebee species and the species-rich chalk grassland and hay meadow communities in which they live, all of which are becoming increasingly rare.

“For the plant, relying on a small group of insects such as bumblebees as pollinators is very beneficial because it ensures efficient pollen transfer. Bumblebees quickly learn to visit the most rewarding flowers, so providing protein-rich pollen is one way plants can encourage bumblebees to be faithful. But this close relationship has many potential pitfalls, because if the pollinators are lost, the flowers may not be able to reproduce, and this may be what we are seeing in the hay meadows, chalk grasslands and bumblebees species throughout Northern Europe,” Hanley says.

Becky Allen | alfa
Further information:
http://www.britishecologicalsociety.org

More articles from Ecology, The Environment and Conservation:

nachricht 5000 tons of plastic released into the environment every year
12.07.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Climate impact of clouds made from airplane contrails may triple by 2050
27.06.2019 | European Geosciences Union

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>