Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diatoms Discovered to Remove Phosphorus from Oceans

06.05.2008
Scientists at the Georgia Institute of Technology have discovered a new way that phosphorus is naturally removed from the oceans – its stored in diatoms.

The discovery opens up a new realm of research into an element that’s used for reproduction, energy storage and structural materials in every organism. Its understanding is vital to the continued quest to understand the growth of the oceans. The research appears in the May 2, 2008 edition of the journal Science.

Ellery Ingall, associate professor in Georgia Tech’s School of Earth and Atmospheric Sciences, along with Ph.D. student Julia Diaz, collected organisms and sediments along an inlet near Vancouver Island in British Columbia. During their investigation on the boat, Diaz used a traditional optical microscope to discover that diatoms, microscopic organisms that live in oceans and damp surfaces, were storing blobs of very dense concentrations of phosphorus called polyphosphates.

“These polyphosphates have been missed in classic studies because they haven’t been recovered by the typical measurement techniques,” said Ingall. “No one measured or treated the samples because no one knew they were there – they didn’t even think to look for it.”

For a long time, scientists have been unable to account for the difference in the amount of phosphorus that’s in the oceans and the amount that’s washed in from rivers.

“We’re getting the initial clues as to how this phosphorus gets to the bottom of the oceans,” said Diaz. “These diatoms are sinking from the top to the bottom of the ocean, and as they’re sinking, they’re transporting the phosphorus in the form of intracellular polyphosphate.”

After making their initial discovery, the team made another. They went to Argonne National Laboratory near Chicago to delve deeper and found that some of the blobs were polyphosphate, some were a mineral known as apatite, and some were a transitional material between the two.

Now that they’ve proved a link between polyphosphate and apatite, they’re next step is to try and capture the chemical transition between the two by running controlled experiments in the lab.

David Terraso | newswise
Further information:
http://www.gatech.edu

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>