Experts prove the geochemical origin of part of the CO2 emissions in semiarid climates

These researchers have analysed for the first time the CO2 level in carbonated semiarid systems. The interest of the work lies in the knowledge of the CO2 production processes and their absorption and in the conservation of one of the richest ecosystems of Spain.

One of the most recent studied on the subject is the doctoral thesis “CO2 interchanges between atmosphere and karst ecosystems: Applicability of the commonly applied techniques”, read by Penélope Serrano Ortiz and led by Doctors Andrew S. Kowalski and Lucas Alados Arboledas.

The work, supported by the “Carbon and water balance in Mediterranean thicket ecosystems in Andalusia: Effect of the climatic change” project, has permitted to quantify and identify the processes involved in carbon annual balance in a semiarid carbonated substrate ecosystem, situated in Sierra de Gádor (Almeria). After three years of observation of this ecosystem (2004-2006), through the use of the most advanced techniques (attached photo), have permitted to estimate the annual carbon balance. The carbon balance of this type of ecosystem has been checked for the first time, revealing that it acts as a CO2 drain which assimilates approximately 25 g C m-2 a year (between 10 and 20 times lower than arable land and tree ecosystems respectively).

Extreme climate

What is the meaning of this in an area characterized by a scrubland vegetation and a dry climate? Up to now, when it came to devise measures to prevent climatic change, they used to value tree ecosystems especially; that is the origin of the emphasis made in the reforestation and forestation of neglected agricultural land. But little attention had been paid to other ecosystems, such as the thicket ecosystem object of this study, which represents more than half the forest area of Andalusia (where a great part of the biological diversity of the Mediterranean ecosystems gathers together).

In that respect, besides defining the CO2 assimilation capacity of the studied thicket area, Serrano’s thesis has proved how rain distribution conditions the functional nature of the studied ecosystem and how the duration of the drought period and, therefore, the water content, determinates the duration of the CO2 geochemical emissions, through soil ventilation.

It proves that CO2 production is not only related to vegetation, but also to geochemical emissions which increase in dry seasons.

“The hypothesis formulated in this work -says Serrano- is that the emissions are a consequence of a ventilation phenomenon of the carbonated system’s macro-pores, which appear to be connected with wind speed. In this line, certain studies on degasification phenomenon in caves and turbulent CO2 interchanges with the atmosphere, carried out by Sergio Sánchez Moral and Soledad Cuezva Robleño (Spanish Museum of Natural Sciences, CSIC) in the Altamira Cave, endorse the theory of the existence of CO2 geochemical flows in ecosystems situated in karst substrate”.

Politics and ecology

CO2 is one of the main greenhouse gases which contributes to the rise of earth’s temperature. Serrano Ortiz’s study is the first one focused on carbonated semiarid ecosystems and has proved that they act as CO2 drains, due to the action of the thickets, and as CO2 geochemical generators in dry periods (especially worrying if we reach the temperature rise predicted by climatic change models).

His work provides data of C (carbon) flows in key ecosystems for biodiversity conservation, as well as for the negotiations related to CO2 emissions.

Media Contact

Dr Penélope Serrano Ortiz alfa

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors