Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical reforestation aided by bats

04.04.2008
German scientists engage bats to kick-start natural reforestation in the tropics by installing artificial bat roosts in deforested areas.

This novel method for tropical restoration is presented in a new study published online in the science journal Conservation Biology this week.

Detlev Kelm from the Leibniz Institute for Zoo and Wildlife Research in Berlin (IZW) and Kerstin Wiesner and Otto von Helversen from the University of Erlangen –Nuremberg report that the deployment of artificial bat roosts significantly increases seed dispersal of a wide range of tropical forest plants into their surroundings, providing a simple and cheap method to speed up natural forest regeneration.

Tropical forests are of global ecological importance. They are a key contributor to the global carbon balance and are host to a major part of the world’s biodiversity. Between 2000 and 2005, worldwide net losses of tropical forest cover averaged 0.18 % annually and regionally even exceeded 1.5 % annually in some Latin American countries. Forest is usually replaced by agriculture. Often soils become rapidly infertile and land is abandoned. Because deforested areas rarely offer much food or protection for seed dispersers such as birds or small mammals, natural forest regeneration is hampered by a lack of natural seed inputs. The alternative, replanting tropical forests, is too expensive and rarely a feasible option, and, in general, knowledge on how best to rapidly restore natural vegetation is lacking.

“We believe that bats could help in reforestation. They are able to cover large distances during their nightly foraging flights and are willing to enter deforested areas”, says Detlev Kelm from the IZW. Many bats eat fruits or nectar, and thus are key species for seed dispersal and flower pollination. Kelm and colleagues showed that the principal barrier to reforestation - the lack of seed inputs - could be overcome by the deployment of artificial day roosts for bats in deforested areas. These roosts were designed to approximate characteristics of large, hollow tree trunks, the main type of natural bat roost. “Within a few days to weeks the first bats will move in. So far we have found ten bat species using the roosts, and several of these are common and important seed dispersers”, Kelm reports. “We measured the effect of the roosts on seed dispersal and found seeds of more than 60 plant species being transported by the bats”. Of these plants, most were pioneer species, which represent the initial stages of natural forest succession.

This cost and labour efficient method can thus support and speed up natural forest regeneration. Artificial roosts are simply built boxes, which require little maintenance and can be used by bats for many years. “We hope that this cheap and easy to use method will be applied in many parts of the tropics in the near future, and that bats will be “employed” as efficient agents of reforestation”, says Kelm. They may provide an effective contribution to the amelioration of deforestation and climate change.

Information & Photos:

Leibniz Institute for Zoo and Wildtlife Research (IZW)
in the Forschungsverbund Berlin e.V.
Alfred-Kowalke-Str. 17
10315 Berlin
Germany
Dr. Detlev Kelm, 0049 30 5168 513, kelm@izw-berlin.de
Steven Seet, 0049 30 5168 108, seet@izw-berlin.de

Christine Vollgraf | Forschungsverbund Berlin
Further information:
http://www.izw-berlin.de
http://www.fv-berlin.de

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>