Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device removes drinking water contaminants

14.06.2002


A Northwestern University environmental engineer has received a U.S. patent for a treatment device that renders perchlorate — a thyroid-damaging ingredient of rocket fuel and a drinking water problem — harmless. The applications extend beyond the safety of drinking water and this one pollutant.



Bruce E. Rittmann, John Evans Professor of Environmental Engineering at the Robert R. McCormick School of Engineering and Applied Science, received U.S. Patent No. 6,387,262 for a hollow-fiber membrane biofilm reactor, that, through a natural biochemical process of electron transfer, turns perchlorate into innocuous chloride.

The cost-effective and environmentally friendly system also works on nitrate, a contaminant from agricultural fertilizers that can cause methemoglobinemia, or blue-baby syndrome, in infants, and is expected to be successful with other oxidized pollutants, such as bromate, selenate, heavy metals, radionuclides, and a range of chlorinated solvents, including trichloroethylene, a problem in the semiconductor industry.


Currently there is no effective clean-up solution for perchlorate, which was discovered in the water supplies of a large number of states in the late 1990s, and existing methods are not always successful when dealing with other contaminants.

"Many emerging pollutants are difficult to treat with conventional methods," said Rittmann. "These methods do not destroy the contaminants but simply move them from place to place, from the water to a solid resin to a nasty brine that still contains the contaminants. Our simple method, which destroys the contaminant, should work for almost every oxidized pollutant, which means it has an incredible range of applications, including being used on more than drinking water."

Rittmann has teamed up with the environmental engineering firm Montgomery-Watson-Harza Engineers, Inc. to conduct a pilot study in La Puenta, Calif., treating groundwater that is highly contaminated with perchlorate and nitrate. Results have shown that the biofilm reactor can effectively treat 0.3 gallons of water per minute, removing perchlorate and nitrate at the same time.

The decontamination process takes advantage of a community of microorganisms that lives as a biofilm on the outer surface of the membranes in the system. The microorganisms, found naturally, act as catalysts for the transfer of electrons from hydrogen gas to the oxidized contaminant, such as perchlorate or nitrate. Chemically speaking, the oxidized contaminants are eager to receive electrons, which reduces them to harmless products. The hydrogen gas supplies the electrons, and the biofilm microorganisms are the agents for the transfer.

A bundle of 7,000 hollow-fiber membranes are in one of the pilot-study biofilm reactors, a column approximately 5 feet tall and 18 inches in diameter. Each membrane is like a long, very thin straw, only 280 micrometers in diameter (the width of a thick sewing thread). Hydrogen gas is fed to the inside of the membrane fibers, and the hydrogen diffuses through the membrane walls into the contaminated water that flows past the fibers. At this meeting point, on the outside of the membrane, bacteria attach to the surface because they gain energy from the process of transferring electrons and can grow and thrive. The contaminants are reduced to harmless end products — perchlorate to chloride and nitrate to nitrogen gas — while the hydrogen gas is oxidized to water.

"We are exploiting nature," said Rittmann. "Life is all about transferring electrons. We have an extraordinarily efficient system for bringing hydrogen and its electrons to oxidized pollutants, such as perchlorate, and reducing them to innocuous substances."

Hydrogen gas is an ideal electron donor for biological drinking water treatment as it is non-toxic and inexpensive, and Rittmann’s system has been shown to be safe. Another advantage is that the performance of the reactor can be controlled simply by adjusting the pressure of the hydrogen gas.

Rittmann also is conducting research on the microbial ecology of the bioreactor system in order to understand how it works. Which microorganisms are doing the work? How fast do they work? How do they achieve the essential reaction of electron transfer?

"By looking at the details of what’s going on in the biofilms, we can make the system even more reliable and efficient in cleaning up some of the most dangerous and newly discovered contaminants in drinking water, ground water and wastewater," said Rittmann.

The current research is supported by a grant from the U.S. Environmental Protection Agency and administered by the American Water Works Association Research Foundation.


Megan Fellman | EurekAlert

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>