Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alarming growth in expected CO2 emissions in China

12.03.2008
The growth in China's carbon dioxide (CO2) emissions is far outpacing previous estimates, making the goal of stabilizing atmospheric greenhouse gases even more difficult, according to a new analysis by economists at the University of California, Berkeley, and UC San Diego.

Previous estimates, including those used by the Intergovernmental Panel on Climate Change, say the region that includes China will see a 2.5 to 5 percent annual increase in CO2 emissions, the largest contributor to atmospheric greenhouse gases, between 2004 and 2010. The new UC analysis puts that annual growth rate for China to at least 11 percent for the same time period.

The study is scheduled for print publication in the May issue of the Journal of Environmental Economics and Management, but is now online.

The researchers' most conservative forecast predicts that by 2010, there will be an increase of 600 million metric tons of carbon emissions in China over the country's levels in 2000. This growth from China alone would dramatically overshadow the 116 million metric tons of carbon emissions reductions pledged by all the developed countries in the Kyoto Protocol. (The protocol was never ratified in the United States, which was the largest single emitter of carbon dioxide until 2006, when China took over that distinction, according to numerous reports.)

Put another way, the projected annual increase in China alone over the next several years is greater than the current emissions produced by either Great Britain or Germany.

Based upon these findings, the authors say current global warming forecasts are "overly optimistic," and that action is urgently needed to curb greenhouse gas production in China and other rapidly industrializing countries.

The authors of the study, Maximillian Auffhammer, UC Berkeley assistant professor of agricultural and resource economics, and Richard Carson, UC San Diego professor of economics, based their findings upon pollution data from China's 30 provincial entities.

Auffhammer said this paper should serve as an alarm challenging the widely held belief that actions taken by the wealthy, industrialized nations alone represent a viable strategy towards the goal of stabilizing atmospheric concentrations of carbon dioxide.

"Making China and other developing countries an integral part of any future climate agreement is now even more important," said Auffhammer. "It had been expected that the efficiency of China's power generation would continue to improve as per capita income increased, slowing down the rate of CO2 emissions growth. What we're finding instead is that the emissions growth rate is surpassing our worst expectations, and that means the goal of stabilizing atmospheric CO2 is going to be much, much harder to achieve."

Researchers traditionally calculate the CO2 emissions for a region or country from data on fossil fuel consumption. Existing models then use those emission figures and factor in such variables as population size, a society's affluence and technology developments to forecast the growth of greenhouse gas emissions.

In explaining the startling differences in results from previous estimates for China's carbon emissions growth, the UC researchers point out that they used province-level figures in their analysis to obtain a more detailed picture of the country's CO2 emissions up to 2004.

"Everybody had been treating China as single country, but each of the country's provinces is larger than many European countries, both in geographic size and population," said Carson. "In addition, there is a wide range in economic development and wealth from one province to the next, as well as major differences in population growth, all of which has an effect on energy consumption that cannot be easily addressed in models based upon aggregate national data."

Since data on fossil fuel consumption is not reported at the province level in China, the researchers used waste gas emissions, available from China's state environmental protection administration reports, as a proxy for CO2 emissions in this paper.

Moreover, the researchers said, the majority of other studies forecasting China's CO2 emissions relied upon information from nearly a decade ago. During the 1990s, per capita income was growing faster than the use of energy in China, which typically relates to slower growth in carbon emissions.

"A notable shift occurred in China around the year 2000, around the time when hope for an agreement with the U.S. on the Kyoto Protocol began to diminish along with external pressure for China to reduce its emissions," said Carson. "Energy use started to grow faster than income, and much of the energy that was used wasn't efficient."

The authors also pointed out that after 2000, China's central government began shifting the responsibility for building new power plants to provincial officials who had less incentive and fewer resources to build cleaner, more efficient plants, which save money in the long run but are more expensive to construct.

"Government officials turned away from energy efficiency as an objective to expanding power generation as quickly as they can, and as cheaply as they can," said Carson. "Wealthier coastal provinces tended to build clean-burning power plants based upon the very best technology available, but many of the poorer interior provinces replicated inefficient 1950s Soviet technology."

"The problem is that power plants, once built, are meant to last for 40 to 75 years," said Carson. "These provincial officials have locked themselves into a long-run emissions trajectory that is much higher than people had anticipated. Our forecast incorporates the fact that much of China is now stuck with power plants that are dirty and inefficient."

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>