Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secrets of cooperation between trees and fungi revealed

06.03.2008
Trees and fungi have constructed a close relationsip with the passing of the ages. Fungi like to grow between the roots of trees and the arrangement is beneficial to both partners.

Their delicate balance is now being revealed for the very first time. VIB researchers at Ghent University in colaboration with an international team have succeeded in unravelling the genetic code of the Laccaria bicolor fungus. This new information is crucial to our knowledge. It will lead to a better understanding of how fungi help trees to grow and how together they can be indicators of climate change.

Trees and fungi live happily together
Trees are the lungs of the earth. They draw CO2 from the atmosphere and convert it into sugars, which then become a source of energy. In the process they breathe O2 back into the atmosphere. This “green” production of biomass – trees account for 90% of the planet’s land-based biomass – is a major influence on the health of our planet.

Trees grow better and faster when certain specialized micro-organisms occur in their root systems. One such organism is the Laccaria bicolor fungus. The symbiotic relationship of the fungus and the tree root systems is advantageous to both. The fungus facilitates the uptake of scarce nutrients such as phosphates and nitrogen and protects the roots against parasites in the soil. In return they are able to draw on the sugars in the roots. 85% of all plants and trees are dependent on symbiotic processes of this kind for their growth.

Genetic code of symbiotic fungus yields up first secrets
An international collaborative project was set up to characterize the genome of the soil fungus Laccaria bicolor . VIB scientists Pierre Rouzé and Yves Van de Peer, working with France’s renowned INRA and JGI of the US, have sequenced the DNA of the fungus. They have been able to identify 20,000 genes in the fungal genome. Their analyses immediately resulted in new knowledge, including the discovery of an arsenal of small proteins known as SSPs (small secreted proteins), which are only made at those places where the fungus and the tree root come into contact. The genome study also revealed that the fungus is unable to break down plant cells but does affect the cell walls of pathogens. This could explain how these fungi protect their symbiotic partners. Additionally the researchers identified genes which play a role in communicating with all the players in the surroundings of the roots of the host tree during growth.
Fungi: barometers of climate change?
A better understanding of the genetic secrets of this fungus does not just hold out the prospect of being able to optimize biomass production; research into the delicate balance between fungus and tree may also yield important information that could be used to monitor climate change. Not only has the genome of the Laccaria bicolor been fully sequenced, that of the poplar, one of the trees with which it forms a relationship, is also fully known. This will make it possible to find out exactly how tree and fungus cooperate and react to stress factors such as drought or extreme temperatures resulting from climate change. The hope exists that the assembled information will result in concrete applications in which trees and fungi can be deployed to the benefit of both people and the environment.

Joke Comijn | alfa
Further information:
http://www.vib.be

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>