Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming Climate May Cause Arctic Tundra to Burn

05.03.2008
Research from ancient sediment cores indicates that a warming climate could make the world’s arctic tundra far more susceptible to fires than previously thought.

The findings, published this week in the online journal, PLoS ONE, are important given the potential for tundra fires to release organic carbon – which could add significantly to the amount of greenhouse gases already blamed for global warming.

Montana State University post-doctoral researcher Philip Higuera is the lead author on the paper, which summarizes a portion of a four-year study funded by the National Science Foundation.

Higuera and his co-authors examined ancient sediments from four lakes in a remote region of Alaska in and around Gates of the Arctic National Park to determine what kind of vegetation existed in the area after the last ice age, 14,000 to 9,000 years ago.

By looking at fossilized pollen grains in the sediment cores, Higuera and his co-authors determined that after the last ice age, the arctic tundra was very different from what it is now. Instead of being covered with grasses, herbs, and short shrubs, it was covered with vast expanses of tall birch shrubs.

Charcoal preserved in the sediment cores also showed evidence that those shrub expanses burned – frequently.

“This was a surprise,” Higuera said. “Modern tundra burns so infrequently that we don’t really have a good idea of how often tundra can burn. Best estimates for the most flammable tundra regions are that it burns once every 250-plus years.”

The ancient sediment cores showed the shrub tundra burned as frequently as modern boreal forests in Alaska – every 140 years on average, but with some fires spaced only 30 years apart.

Higuera’s research is important because other evidence indicates that as the climate has warmed in the past 50 to 100 years, shrubs have expanded across the world’s tundra regions.

“There is evidence of increasing shrub biomass in modern tundra ecosystems, and we expect temperatures to continue to increase and overall moisture levels to decrease. Combine these two factors and it suggests a greater potential for fires,” Higuera said. “The sediment cores indicate that it’s happened before.”

The world’s high latitude tundra and boreal forest ecosystems contain roughly 30 percent of the planet’s total soil carbon. Currently, much of the carbon is locked in permafrost. But a warming climate could cause the permafrost to melt and release its carbon stores into the atmosphere where it would contribute to the greenhouse effect.

“Vegetation change through an increase in shrub biomass and more frequent burning will change a great deal of the carbon cycle in these high latitudes,” Higuera said. “We don’t fully understand the implications, except that it’s reasonable to expect that carbon that was previously locked up could enter the atmosphere.”

The paper is the first in a series Higuera expects to publish from his field work. Future papers will examine how climate, vegetation, and fire regimes have interacted over the past 15,000 years in the region.

Higuera was assisted in his research by MSU undergraduate Alison Kennedy, who graduated in from Earth Sciences in 2007 and co-authors Linda Brubaker and Patricia Anderson from the University of Washington, Thomas Brown from Lawrence Livermore National Laboratory, and Feng Sheng Hu from the University of Illinois. A National Parks Ecological Research Fellow, Higuera works in the Paleoecology Lab led by MSU professor Cathy Whitlock.

Contact:
Tracy Ellig
Director, MSU News Service
Tel: +1 406-994-5607
Email: tellig@montana.edu
Philip Higuera
National Parks Ecological Research Fellow at Montana State University
Tel: +1 (406) 599-8908 (office), +1 (406) 994-6856 (lab)
Email philip.higuera@montana.edu
Citation: Higuera PE, Brubaker LB, Anderson PM, Brown TA, Kennedy AT, et al (2008) Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change. PLoS ONE 3(3): e0001744. doi:10.1371/journal.pone.0001744

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001744

More articles from Ecology, The Environment and Conservation:

nachricht Surface clean-up technology won't solve ocean plastic problem
04.08.2020 | University of Exeter

nachricht Improving the monitoring of ship emissions
03.08.2020 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>