Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hibernation-like behaviour in Antarctic fish – on ice for winter

05.03.2008
Scientists have discovered an Antarctic fish species that adopts a winter survival strategy similar to hibernation. Reporting this week in the journal PLoS ONE, the online journal from the Public Library of Science, scientists from British Antarctic Survey (BAS) and the University of Birmingham reveal, for the first time, that the Antarctic ‘cod’ Notothenia coriiceps effectively ‘puts itself on ice’ to survive the long Antarctic winter.

The study showed that the fish activate a seasonal ‘switch’ in ecological strategy – going from one that maximises feeding and growth in summer to another that minimises the energetic cost of living during the long, Antarctic winter.

The research demonstrates that at least some fish species can enter a dormant state, similar to hibernation that is not temperature driven and presumably provides seasonal energetic benefits. Scientists already know that Antarctic fish have very low metabolic rates and blood ‘antifreeze’ proteins that allow them to live in near-freezing waters. This study demonstrates that Antarctic fish - which already live in the ‘slow lane’ with extremely low rates of growth, metabolism and swimming activity - can in fact further depress these metabolic processes in winter.

Lead author Dr Hamish Campbell, formerly at the University of Birmingham, UK but now at University of Queensland, Australia said,

“Hibernation is a pretty complex subject. Fish are generally incapable of suppressing their metabolic rate independently of temperature. Therefore, winter dormancy in fish is typically directly proportional to decreasing water temperatures. The interesting thing about these Antarctic cod is that their metabolic rates are reduced in winter even though the seawater temperature doesn’t decrease much. It seems unlikely that the small winter reductions in water temperature that do occur are causing the measured decrease in metabolism. However, there are big seasonal changes in light levels, with 24 hour light during summer followed by months of winter darkness – so the decrease in light during winter may be driving the reduction in metabolic rates.”

Dr Keiron Fraser from BAS says,
“This is our first insight into how these fish live in winter. We have for the first time in the Antarctic, used cutting edge technologies combining tracking of free swimming fish in the wild and heart rate monitors to allow us to investigate just how these animals cope in winter with living in near freezing water and almost complete darkness for months on end. It appears they utilise the short Antarctic summers to gain sufficient energy from feeding to tide them over in winter. The hibernation-like state they enter in winter is presumably a mechanism for reducing their energy requirements to the bare minimum. The interesting question we still have to answer is why these fish greatly reduce feeding in winter when food is still available.”

Why these fish chose to adopt this hibernation-like strategy during winter is currently unclear, but it presumably provides energetic benefits. The traditional views of hibernation are being challenged constantly. This study introduces a new group of animals that appear to utilise a hibernation-like strategy that allows them to survive during the long winters in one of the harshest environments on Earth.

Linda Capper | alfa
Further information:
http://www.antarctica.ac.uk
http://www.plosone.org/doi/pone.0001743
http://www.antarctica.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>