Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invading trees put rainforests at risk

04.03.2008
To the list of threats to tropical rainforests you can add a new one — trees.

It might seem that for a rainforest the more trees the merrier, but a new study by scientists at the Carnegie Institution warns that non-native trees invading a rainforest can change its basic ecological structure — rendering it less hospitable to the myriad plant and animal species that depend on its resources. Results are published in the Proceedings of the National Academy of Sciences.*

The research team, led by Gregory Asner of the Carnegie Institution’s Department of Global Ecology, used innovative remote sensing technology on aircraft to survey the impact of invasives on more than 220,000 hectares (850 square miles) of rainforest on the island of Hawaii. Previous studies of the impact of invasive plants on forests were limited to small areas. Instruments aboard the Carnegie Airborne Observatory (CAO) penetrate the forest canopy to create a regional “CAT scan” of the ecosystem, identifying key plant species and mapping the forest’s three-dimensional structure.

“Invasive tree species often show biochemical, physiological, and structural properties that are different from native species,” says Asner. “We can use these ‘fingerprints’ combined with the 3-D images to see how the invasives are changing the forest.”

This is the first use of this approach to track invasives in Hawaii, where roughly half of all organisms are non-native, and approximately 120 plant species are considered highly invasive. Undisturbed Hawaiian rainforests are often dominated by the ohia tree (Metrosideros polymorpha), but these slow-growing native trees are losing ground to newcomers, such as the tropical ash (Fraxinus uhdei) and the Canary Island fire tree (Morella faya).

CAO surveys of rainforest tracts on the Mauna Kea and Kilauea Volcanoes found that stands of these two invasive tree species form significantly denser canopies than the native ohia trees. Less light reaches lower forest levels, and as a result native understory plants such as tree ferns are suppressed.

Introduced trees can also pave the way for more invaders by altering soil fertility. The Moluccan albizia (Falcataria moluccana) “fixes” atmospheric nitrogen, concentrating it in the soil, which speeds the growth of a smaller invasive tree, the Strawberry Guava (Psidium cattleianum). The guava trees form a dense, mid-level thicket that blocks most light from reaching the ground and stifles young native plants.

“All of our invasive species detections were made in protected state and federal rainforest reserves,” says Asner. “These species can spread across protected areas without the help of land use changes or other human activities, suggesting that traditional conservation approaches on the ground aren’t enough for the long-term survival of Hawaii’s rainforests.”

“These new airborne technologies, which are sensitive enough to discern saplings and young trees, may make the problem more tractable,”comments study co-author Flint Hughes of the US Forest Service. “They allow scientists to probe the make-up of forests over large areas and detect invasions at earlier stages.”

Based on the success of this study, Asner and colleagues plan to expand CAO surveys of the ecological impacts of invaders in other forests on Hawaii and Kauai Islands, where premier, remote rainforest reserves remain virtually unmapped.

Gregory Asner | EurekAlert!
Further information:
http://www.CIW.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>