Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invading trees put rainforests at risk

04.03.2008
To the list of threats to tropical rainforests you can add a new one — trees.

It might seem that for a rainforest the more trees the merrier, but a new study by scientists at the Carnegie Institution warns that non-native trees invading a rainforest can change its basic ecological structure — rendering it less hospitable to the myriad plant and animal species that depend on its resources. Results are published in the Proceedings of the National Academy of Sciences.*

The research team, led by Gregory Asner of the Carnegie Institution’s Department of Global Ecology, used innovative remote sensing technology on aircraft to survey the impact of invasives on more than 220,000 hectares (850 square miles) of rainforest on the island of Hawaii. Previous studies of the impact of invasive plants on forests were limited to small areas. Instruments aboard the Carnegie Airborne Observatory (CAO) penetrate the forest canopy to create a regional “CAT scan” of the ecosystem, identifying key plant species and mapping the forest’s three-dimensional structure.

“Invasive tree species often show biochemical, physiological, and structural properties that are different from native species,” says Asner. “We can use these ‘fingerprints’ combined with the 3-D images to see how the invasives are changing the forest.”

This is the first use of this approach to track invasives in Hawaii, where roughly half of all organisms are non-native, and approximately 120 plant species are considered highly invasive. Undisturbed Hawaiian rainforests are often dominated by the ohia tree (Metrosideros polymorpha), but these slow-growing native trees are losing ground to newcomers, such as the tropical ash (Fraxinus uhdei) and the Canary Island fire tree (Morella faya).

CAO surveys of rainforest tracts on the Mauna Kea and Kilauea Volcanoes found that stands of these two invasive tree species form significantly denser canopies than the native ohia trees. Less light reaches lower forest levels, and as a result native understory plants such as tree ferns are suppressed.

Introduced trees can also pave the way for more invaders by altering soil fertility. The Moluccan albizia (Falcataria moluccana) “fixes” atmospheric nitrogen, concentrating it in the soil, which speeds the growth of a smaller invasive tree, the Strawberry Guava (Psidium cattleianum). The guava trees form a dense, mid-level thicket that blocks most light from reaching the ground and stifles young native plants.

“All of our invasive species detections were made in protected state and federal rainforest reserves,” says Asner. “These species can spread across protected areas without the help of land use changes or other human activities, suggesting that traditional conservation approaches on the ground aren’t enough for the long-term survival of Hawaii’s rainforests.”

“These new airborne technologies, which are sensitive enough to discern saplings and young trees, may make the problem more tractable,”comments study co-author Flint Hughes of the US Forest Service. “They allow scientists to probe the make-up of forests over large areas and detect invasions at earlier stages.”

Based on the success of this study, Asner and colleagues plan to expand CAO surveys of the ecological impacts of invaders in other forests on Hawaii and Kauai Islands, where premier, remote rainforest reserves remain virtually unmapped.

Gregory Asner | EurekAlert!
Further information:
http://www.CIW.edu

More articles from Ecology, The Environment and Conservation:

nachricht Plant seeds survive machine washing - Dispersal of invasive plants with clothes
11.09.2018 | Gesellschaft für Ökologie e.V.

nachricht Air pollution leads to cardiovascular diseases
21.08.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>