Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's helpers: Using microorganisms to remove TCE from water

03.03.2008
In 2002, Bruce Rittmann, PhD, director of the Biodesign Institute’s Center for Environmental Biotechnology, received a patent for an innovative way to use nature to lend society a hand. He invented a treatment system, called the membrane biofilm reactor (MBfR), which uses naturally occurring microorganisms to remove contaminants from water.

Now Rittmann and his research team, which includes Rosa Krajmalnik-Brown and Jinwook Chung, recently published a paper in the journal Environmental Science & Technology for a new application that removes a problematic contaminant that has made local headlines.

The chlorinated solvent trichloroethene (TCE) has been found to be an increasingly problematic contaminant in groundwater. The detection of TCE recently forced the shut down of the water supply for the Greater Phoenix area municipalities of Paradise Valley and Scottsdale.

TCE has been widely used as a cleaning agent and solvent for many military, commercial, and industrial applications. Its widespread use, along with its improper handling, storage, and disposal, has resulted in frequent detection of TCE in the groundwater. TCE has the potential to cause liver damage, malfunctions in the central nervous system and it is considered a likely human carcinogen.

“As with other elements, the chlorine cycle is becoming a key concern to many environmental pollution scientists,” said Krajmalnik-Brown, a researcher in the Biodesign Institute’s Center for Environmental Biotechnology and assistant professor in the Ira A. Fulton School of Engineering’s Department of Civil and Environmental Engineering.

Transforming the chlorinated solvent to a harmless product is the best way to eliminate the harmful effects of TCE. In the case of TCE, Mother Nature is the best helper. Scientists have discovered specialized microorganisms that can replace the chlorine in the chlorinated molecules with hydrogen, a process called reductive dechlorination. While other methods are possible, they are often more costly than reductive dechlorination on a large scale, and many do not transform TCE into a harmless end product.

In the paper, the Rittmann team utilized the MBfR and a naturally occurring group of microorganisms able to remove TCE from water. Surprisingly, these microorganisms, called dehalogenerators, have an affinity for chlorinated organics and can be found all throughout nature, even in clean water supplies, the soil, and groundwater.

“These bacteria respire TCE, that is, they can use TCE like we use oxygen to breathe,” said Krajmalnik-Brown. “They take in the TCE and they start removing the chlorines, step by step. In the ideal case, the dehalogenators remove all the chlorines, converting TCE to ethene, which is harmless.”

With this knowledge in hand, the challenge for the research team was to adapt their existing MfBR system, which can remove other water contaminants, to see if it could now handle TCE. A version of the reactor that addresses perchlorate, a byproduct of rocket fuel, is already in the commercialization pipeline.

“A key challenge with using these bacteria is that, if they don’t dechlorinate all the way, the TCE can be converted to vinyl chloride, which is a known human carcinogen,” said Krajmalnik-Brown. “In other words, if you don’t have complete dechlorination, you can end up having something worse than what you started with. So, it is critical to have the right mix of microorganisms for complete dechlorination.”

Their approach was simple in execution. They took an existing MBfR that was handling perchlorate removal and then introduced TCE into the system.

Rittmann’s MBfR works by delivering hydrogen gas to the bacteria through tiny hollow tubes submerged in water. In the right environment, the tubes become coated with a biofilm containing microorganisms. The system provides the microorganisms with hydrogen gas, which must be present for the microorganisms to change the chemical composition of a contaminant and render it harmless.

Their results indicated that the MBfR could be an incredibly versatile system, quickly adapting to now handle TCE. “This was really surprising, because there wasn’t any TCE at our pilot plant experiments prior to switching,” said Krajmalnik-Brown. “So there must have been really small amounts of the critical microorganisms in the culture. When shifted to TCE, they thrived and handled the contaminants.”

By assessing the MBfR community, they found the special dehalogenating bacteria that can take the hydrogen supplied by the MBfR and reduce TCE all the way to harmless ethene. Using the latest molecular techniques, they could not only identify the bacterial population to handle TCE, but also the genes within these populations that make enzymes that detoxify TCE to ethene.

The team found one particular organism, a new type of Dehalococcoides, the bacteria known to dechlorinate TCE all the way to ethene. They were also the first group to grow these dehalogenating bacteria in a biofilm in the lab.

“The bacteria are notoriously difficult to grow into a biofilm in the lab and study because they need hydrogen as an electron donor. An advantage of our system is that the MBfR can provide hydrogen through a membrane, which allows the microbial community to grow and naturally form a biofilm surrounding the membrane,” said Krajmalnik-Brown.

Next, the team hopes to drive the TCE system toward commercialization. Other oxidized contaminants that the system has been effective in reducing in the laboratory setting include perchlorate, selenate (found in coal wastes and agricultural drainage), chromate (found in industrial wastes), and other chlorinated solvents.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Waste in the water – New purification techniques for healthier aquatic ecosystems
24.07.2018 | Eberhard Karls Universität Tübingen

nachricht Plenty of habitat for bears in Europe
24.07.2018 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

NRL's sun imaging telescopes fly on NASA Parker Solar Probe

13.08.2018 | Physics and Astronomy

UT-ORNL team makes first particle accelerator beam measurement in six dimensions

13.08.2018 | Physics and Astronomy

ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres

13.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>