Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polluted Prey Causes Wild Birds to Change Their Tune

27.02.2008
Considerable attention has been paid to the effects of endocrine disrupting chemicals in aquatic environments, but rather less attention has been given to routes of contamination on land.

A new study, published in PLoS ONE on February 27 by researchers at Cardiff University, reveals that wild birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour: male birds exposed to this pollution develop more complex songs, which are actually preferred by the females, even though these same males usually show reduced immune function compared to controls.

Katherine Buchanan and her colleagues studied male European starlings (Sturnus vulgaris) foraging at a sewage treatment works in the south-west UK and analysed the earthworms that constitute their prey. The researchers found that those birds exposed to environmentally-relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to males in a control group.

Specifically, birds dosed with the complete spectrum of endocrine disrupting chemicals found in the invertebrates spent longer singing, sang more often and produced more complex songs, a sexually selected trait important in attracting females for reproduction even though birds dosed at these ecologically relevant levels also showed reduced immune function.

The study also addresses the mechanism for this effect, as the researchers found that the high vocal centre (HVC), the area of the brain that controls male song complexity, is significantly enlarged in the contaminated birds. Estrogen causes masculinisation of the songbird brain and the HVC is enriched with estrogen receptors. Neural development is thus susceptible to exposure to chemicals which mimic estrogen, or to enhanced estrogen levels. The results also confirm the plasticity of the adult songbird brain.

Finally, the scientists found that female starlings prefer the song of males exposed to the mixture of endocrine disrupting chemicals, suggesting the potential for population level effects on reproductive success.

“This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song,” said Katherine Buchanan, the corresponding author of the paper. “These results may have consequences of population dynamics of an already declining species.”

Disclaimer
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001674

More articles from Ecology, The Environment and Conservation:

nachricht Five-point plan to integrate recreational fishers into fisheries and nature conservation policy
20.03.2019 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Rain is important for how carbon dioxide affects grasslands
06.03.2019 | University of Gothenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>