Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ETH Zurich competence center ESC introduces energy strategy

25.02.2008
To even begin to combat climate change effectively, CO2 emissions have to fall sharply: to 1 ton per capita per year. According to researchers from ETH Zurich the way to the goal for this century is through an energy strategy based on the three Es: increased efficiency, renewable energy and electrification.
Long-term objective 1-ton CO2 society

In the past year, various reports from the United Nations' Intergovernmental Panel on Climate Change (IPCC) have warned the world in no uncertain terms that in order to achieve a stable climate on our planet by the end of this century, any increase in CO2 emissions in the coming decades must be curbed before the emissions can be appreciably reduced. According to the IPCC, the maximum amount of CO2 emissions that can be tolerated globally by the end of the 21st century amounts to roughly 2000 gigatons. This will mean a considerable reduction in the emission of CO2 per capita.

The per capita emission of carbon dioxide in Switzerland is currently 9 tons per year, approximately twice the global average. "Our objective for the climate and energy policy for the century has to be to induce each member of the human race to produce not more than 1 ton of carbon dioxide per year", Professor Ralph Eichler, President ETH Zurich, explained to the media today.

Systematic implementation of 3E strategy

This proposed emission target for carbon dioxide may seem ambitious by today's standards, but it can be achieved by the end of the century both in Switzerland and throughout the world. This is reflected in the calculations made by ETH Zurich's own Energy Science Center (ESC). In order to reach the target, an energy strategy will have to be consistently implemented. As stated by Profes-sor Konstantinos Boulouchos, the proposed strategy is based on three pillars: 1) the exhaustion of efficiency potential, 2) the extended use of renewable energy sources and 3) the increased share of electricity in the energy mix.

Exhausting the efficiency potential will mean increasing efficiency in every link of the energy conversion chain, from extraction at the energy source, through stor-age and distribution up to energy usage. This alone would harbour great sav-ings potential, especially when combined with market-based instruments to in-fluence the demand side.

The second E of the strategy focuses on the use of renewable energy sources, such as photovoltaics, water, and wind. Important to note is that economic as well as ecological aspects must be taken into consideration when using renew-able energy sources.

Electricity as the backbone of the energy system

The newcomer to the 3-E strategy constitutes the third E: electrification. Accord-ing to ETH Zurich researchers, in future C02 poor electricity will establish itself as the backbone of a sustainable energy system. It is increasingly being used in heating and cooling buildings (with heat pumps, for example), and is expected to extend to individual mobility (moving, in the long run, from hybrid vehicles to fully electric cars).

A reorientation of the energy system, however, will not happen overnight. It is likely to take several decades. All the more reason that it is crucial that steps be taken today: infrastructure in industrialized countries (transmission network, power plants) needs to be renewed and in threshold countries, erected.

Innovative research at ETH Zurich

ETH Zurich conducts intensive research with a mind to finding new solutions and methods to face the CO2 problem. Professor Marco Mazzotti from the Insti-tute for Process Engineering is researching the possibilities of eliminating CO2 in fossil-fueled power stations and combining it with stable and solid substances. This so-called mineralization thus facilitates the permanent and secure storage of greenhouse gases. Power electronics are becoming increasingly smaller and more efficient: the research group headed by Professor Johann Kolar from the Power Electronic Systems Laboratory is devoted to developing such compo-nents that are deployed, for example, in hybrid vehicles. Efficient control of the drive system of such cars makes a significant contribution towards environmen-tally-friendly private transport.

Promising ETH Zurich research is also being carried out in the field of building systems engineering. The technology at our fingertips today would already en-able us to replace CO2-emitting heating and boiler systems with a combination of innovative wall insulation and heat pumps - with free renewable energy from the ground. This ingenious concept is also just the ticket for existing buildings. "We just need to get cracking", explains Professor HansJürg Leibundgut from the Institute for Building Systems. Within five to six years it should be possible to produce the necessary components on an industrial level so that for the price of a mid-range car, a four-room apartment can be refurbished, with the effect that practically all of the CO2 previously generated by heating and warm water can be prevented.

Renata Cosby | idw
Further information:
http://www.esc.ethz.ch/
http://www.cc.ethz.ch/media/picturelibrary/news/energiestrategie

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany
25.06.2018 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>